Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/117902
Campo DC Valoridioma
dc.contributor.authorPorzi, Lorenzoen_US
dc.contributor.authorPeñate Sánchez, Adriánen_US
dc.contributor.authorRicci, Elisaen_US
dc.contributor.authorMoreno-Noguer, Francescen_US
dc.date.accessioned2022-07-21T09:04:09Z-
dc.date.accessioned2022-09-05T17:37:39Z-
dc.date.available2022-07-21T09:04:09Z-
dc.date.available2022-09-05T17:37:39Z-
dc.date.issued2017en_US
dc.identifier.isbn978-1-5386-2682-5en_US
dc.identifier.issn2153-0858en_US
dc.identifier.urihttp://hdl.handle.net/10553/117902-
dc.description.abstractMost recent approaches to 3D pose estimation from RGB-D images address the problem in a two-stage pipeline. First, they learn a classifier-typically a random forest-to predict the position of each input pixel on the object surface. These estimates are then used to define an energy function that is minimized w.r.t. the object pose. In this paper, we focus on the first stage of the problem and propose a novel classifier based on a depth-aware Convolutional Neural Network. This classifier is able to learn a scale-adaptive regression model that yields very accurate pixel-level predictions, allowing to finally estimate the pose using a simple RANSAC-based scheme, with no need to optimize complex ad hoc energy functions. Our experiments on publicly available datasets show that our approach achieves remarkable improvements over state-of-the-art methods.en_US
dc.languageengen_US
dc.relation.ispartofIEEE International Conference on Intelligent Robots and Systems. Proceedings-
dc.sourceIEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 17418330 (24-28 September 2017)en_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.subject.otherNeural networksen_US
dc.subject.otherRGB-D imagesen_US
dc.titleDepth-aware convolutional neural networks for accurate 3D pose estimation in RGB-D imagesen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConference proceedingsen_US
dc.relation.conference2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017)en_US
dc.identifier.doi10.1109/IROS.2017.8206469en_US
dc.identifier.scopus2-s2.0-85041943688-
dc.identifier.isiWOS:000426978205063-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.eissn2153-0866-
dc.identifier.issue17418330-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.external67238865-
dc.description.numberofpages7en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2876-3301-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNamePeñate Sánchez, Adrián-
crisitem.event.eventsstartdate24-09-2017-
crisitem.event.eventsenddate28-09-2017-
Colección:Actas de congresos
Adobe PDF (3,13 MB)
Vista resumida

Citas SCOPUSTM   

10
actualizado el 24-nov-2024

Visitas

52
actualizado el 29-jun-2024

Descargas

20
actualizado el 29-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.