Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/117897
Title: | Modeling and Optimization of Energy and Exergy Parameters of a Hybrid-Solar Dryer for Basil Leaf Drying Using RSM | Authors: | Parhizi, Zahra Karami, Hamed Golpour, Iman Kaveh, Mohammad Szymanek, Mariusz Blanco-Marigorta, Ana M. Marcos, José Daniel Khalife, Esmail Skowron, Stanisław Adnan Othman, Nashwan Darvishi, Yousef |
UNESCO Clasification: | 3322 Tecnología energética 332205 Fuentes no convencionales de energía |
Keywords: | Basil Leaves Desirability Function Energy and Exergy Evaluation RSM Solar-Forced Convective Dryer |
Issue Date: | 2022 | Journal: | Sustainability (Switzerland) | Abstract: | This study deals with the optimization of energetic and exergetic parameters of a hybrid-solar dryer to dry basil leaves under determined experimental conditions at three air temperatures (40 °C, 55 °C, and 70 °C) and three bed thickness levels (2, 4, and 6 cm). The optimization of the thermodynamic parameters was performed using the response surface method (RSM) based on the central composite design (CCD) and the desirability function (DF) to maximize the drying rate, exergy efficiency, improvement potential rate and the sustainability index, and to minimize the energy utilization, energy utilization ratio and exergy loss rate. These parameters were calculated on the basis of the first and second laws of thermodynamics as the response variables. Based on the results obtained, it was determined that the optimal conditions for basil drying were at a drying air temperature of 63.8 °C and a bed thickness of 2 cm. At this point, the parameters of the drying rate, energy utilization, energy utilization ratio, exergy efficiency, exergy loss rate, improvement potential rate and sustainability index were obtained with the maximum utility function (D = 0.548) as 0.27, 0.019 (kJ/s), 0.23, 65.75%, 0.016 (kJ/s), 1.10 (kJ/s) and 0.015, respectively. | URI: | http://hdl.handle.net/10553/117897 | ISSN: | 2071-1050 | DOI: | 10.3390/su14148839 | Source: | Sustainability (Switzerland) [EISSN 2071-1050], v. 14 (14), 8839, (Julio 2022) |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
21
checked on Nov 24, 2024
WEB OF SCIENCETM
Citations
18
checked on Nov 24, 2024
Page view(s)
24
checked on Feb 3, 2024
Download(s)
105
checked on Feb 3, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.