Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/117857
Campo DC Valoridioma
dc.contributor.authorTilliette, C.en_US
dc.contributor.authorTaillandier, V.en_US
dc.contributor.authorBouruet-Aubertot, P.en_US
dc.contributor.authorGrima, N.en_US
dc.contributor.authorMaes, C.en_US
dc.contributor.authorMontanes, M.en_US
dc.contributor.authorSarthou, G.en_US
dc.contributor.authorVorrath, M. E.en_US
dc.contributor.authorArnone, Veronicaen_US
dc.contributor.authorBressac, M.en_US
dc.contributor.authorGonzález Santana, Daviden_US
dc.contributor.authorGazeau, F.en_US
dc.contributor.authorGuieu, C.en_US
dc.date.accessioned2022-08-30T11:53:47Z-
dc.date.available2022-08-30T11:53:47Z-
dc.date.issued2022en_US
dc.identifier.issn0886-6236en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/117857-
dc.description.abstractIn the Western Tropical South Pacific, a hotspot of dinitrogen-fixing organisms has been identified. The survival of these species depends on the availability of dissolved iron (DFe); however, the source of this DFe is still unclear. DFe was measured along a transect from 175°E to 166°W near 19–21°S. The distribution of DFe showed high spatial variability: low concentrations (∼0.2 nmol kg−1) in the South Pacific gyre and high concentrations (up to 50 nmol kg−1) in the west of the Tonga arc, indicating that this arc is a clear boundary between iron-poor and iron-rich waters. An optimal multiparameter analysis was used to distinguish the relative importance of physical transport relative to non-conservative processes on the observed distribution. This analysis demonstrated that the shallow hydrothermal sources present along the Tonga-Kermadec arc are responsible for the high concentrations observed in the photic layer. Nevertheless, in contrast to what has been observed for deep hydrothermal plumes, our results highlighted the rapid decrease in DFe concentrations near shallow hydrothermal sources. This is likely due to a shorter residence time of surface water masses combined with several biogeochemical processes at play (precipitation, scavenging, biological uptake, and photoreduction). This study clearly highlights the role of shallow hydrothermal sources on the DFe cycle within the Tonga-Kermadec arc where a strong link to biological activity in surface waters can be assessed, despite the small but significant fraction of DFe ultimately stabilized. It also emphasizes the need to consider the impact of these sources for a better understanding of the global iron cycle.en_US
dc.languageengen_US
dc.relation.ispartofGlobal Biogeochemical Cyclesen_US
dc.sourceGlobal Biogeochemical Cycles [ISSN 0886-6236], v. 36 (7), e2022GB007363, (Julio 2022)en_US
dc.subject251002 Oceanografía químicaen_US
dc.subject.otherBiogeochemical Processesen_US
dc.subject.otherDissolved Ironen_US
dc.subject.otherEompen_US
dc.subject.otherHydrothermal Sourcesen_US
dc.subject.otherIron Cycleen_US
dc.subject.otherWestern Tropical South Pacificen_US
dc.titleDissolved Iron Patterns Impacted by Shallow Hydrothermal Sources Along a Transect Through the Tonga-Kermadec Arcen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1029/2022GB007363en_US
dc.identifier.scopus85135054769-
dc.identifier.isiWOS:000823305800001-
dc.contributor.orcid0000-0002-3009-9342-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0001-6532-7141-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0002-8044-0350-
dc.contributor.orcid0000-0003-3075-3137-
dc.contributor.orcid0000-0001-8726-7768-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0001-6373-8326-
dc.contributor.authorscopusid57821556800-
dc.contributor.authorscopusid12242921600-
dc.contributor.authorscopusid56123245100-
dc.contributor.authorscopusid6602470007-
dc.contributor.authorscopusid56249837700-
dc.contributor.authorscopusid57820777000-
dc.contributor.authorscopusid6603306739-
dc.contributor.authorscopusid57200517815-
dc.contributor.authorscopusid57195278718-
dc.contributor.authorscopusid36143966700-
dc.contributor.authorscopusid57205690095-
dc.contributor.authorscopusid6603760784-
dc.contributor.authorscopusid6701902921-
dc.identifier.eissn1944-9224-
dc.identifier.issue7-
dc.relation.volume36en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.identifier.external126788043-
dc.utils.revisionen_US
dc.date.coverdateJulio 2022en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr2,19-
dc.description.jcr5,2-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
dc.description.miaricds11,0-
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IOCAG: Química Marina-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptGIR IOCAG: Química Marina-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.orcid0000-0002-8044-0350-
crisitem.author.orcid0000-0001-8726-7768-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameArnone, Veronica-
crisitem.author.fullNameGonzález Santana, David-
Colección:Artículos
Adobe PDF (3,96 MB)
Vista resumida

Citas SCOPUSTM   

10
actualizado el 12-may-2024

Visitas

42
actualizado el 17-feb-2024

Descargas

23
actualizado el 17-feb-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.