Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/117356
Title: Winkler model for predicting the dynamic response of caisson foundations
Authors: Carbonari ---,Sandro 
Rodríguez Bordón, Jacob David 
Padrón, Luis Alberto 
Morici, Michele
Dezi, Francesca
Aznárez, Juan José 
Leoni, Graziano
Maeso Fortuny, Orlando Fco 
UNESCO Clasification: 330532 Ingeniería de estructuras
Keywords: Caisson foundations
Seismic response
Soil-structure interaction
Winkler model
Issue Date: 2022
Journal: Earthquake Engineering and Structural Dynamics 
Abstract: The paper presents a Winkler-based numerical model for the analysis of the dynamic response of caisson foundations. The model allows the evaluation of the impedance functions and of the foundation input motion (FIM), which can be used in the framework of the substructure approach to compute inertial soil-foundation superstructure interaction analyses. In addition, kinematic stress resultants due to seismic shear waves propagating into the soil can be estimated. The caisson is modelled as a Timoshenko beam and the soil-caisson interaction forces are derived from the analyses of the plane-strain vibration problem of an annular rigid ring embedded into the soil. The problem solution is obtained in the frequency domain exploiting the finite element approach and generic soil stratigraphies can be considered in the applications. The model, which is characterised by a very low computational effort, is validated by performing a parametric investigation, comparing results with those obtained from more rigorous BEM-FEM models of the soil-caissons systems. Finally, some applications to real caisson foundations of offshore wind turbines (OWTs) are shown to demonstrate the model accuracy in capturing the seismic response of the foundations obtained from more rigorous models.
URI: http://hdl.handle.net/10553/117356
ISSN: 0098-8847
DOI: 10.1002/eqe.3713
Source: Earthquake Engineering and Structural Dynamics [ISSN 0098-8847], 2022
Appears in Collections:Artículos
Show full item record

SCOPUSTM   
Citations

2
checked on Apr 14, 2024

Page view(s)

97
checked on Jan 20, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.