Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/114981
Campo DC Valoridioma
dc.contributor.authorSánchez Nielsen,Maria Elenaen_US
dc.contributor.authorAntón Canalís,Luisen_US
dc.contributor.authorHernández Tejera, Francisco Marioen_US
dc.date.accessioned2022-06-07T07:15:10Z-
dc.date.available2022-06-07T07:15:10Z-
dc.date.issued2004en_US
dc.identifier.issn1109-2750en_US
dc.identifier.urihttp://hdl.handle.net/10553/114981-
dc.description.abstractFor many humans, interacting with a computer is a cumbersome and frustrating experience. Most people would prefer more natural ways of dealing with computer. The PUI paradigm has emerged as a postWIMP interface paradigm in order to cover these preferences. In this paper, a computer vision system is proposed based on fast detection and accurate hand posture commands recognition in color images, that can be executed in a common PC system equipped with an USB webcam such that any user can use it in its office or home. The major contributions of the presented approach are: (1) a fast segmentation process to segment the moving hand from the image background, which is able to deal with a large number of hand shapes against different backgrounds. (2) A recognition process that identifies the hand posture from the temporal sequence of segmented hands, where postures which are really similar are properly classified. The kernel of the recognition process is a robust shape comparison carried out through a Hausdorff distance approach, which operates on edge maps and derive holistic similarity measures. We introduce the use of a visual memory, which allows handling with diverse visual aspects of each one of the stored patterns that composes this memory. This paper includes experimental evaluations of the recognition process of 26 hand postures and it discusses the results. Experiments show that the system can achieve a 90% recognition average rate and is suitable for real-time applications.en_US
dc.languageengen_US
dc.relation.ispartofWSEAS Transactions on Computers , Vol. 3en_US
dc.subject3304 Tecnología de los ordenadoresen_US
dc.subject330412 Dispositivos de controlen_US
dc.subject.otherHuman-Machine Systemsen_US
dc.subject.otherPerceptual user interfaceen_US
dc.subject.otherComputer Visionen_US
dc.subject.otherImage sequence processingen_US
dc.subject.otherPattern analysisen_US
dc.subject.otherHand gesture recognitionen_US
dc.titleVisual interaction through hand gesture recognition using Hausdorff matchingen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.relation.volume3en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0001-9717-8048-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameSánchez Nielsen,Maria Elena-
crisitem.author.fullNameAntón Canalís, Luis-
crisitem.author.fullNameHernández Tejera, Francisco Mario-
Colección:Artículos
Adobe PDF (341,99 kB)
Vista resumida

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.