Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/114892
Título: An FPGA Based Implementation of a Hyperspectral Anomaly Detection Algorithm for Real-Time Applications
Autores/as: Díaz, María 
Guerra, Raúl 
López, Sebastián 
Caba, Julián
Barba, Jesús
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Anomaly Detection
Fpgas
High-Level Synthesis
Hyperspectral Imaging
Line-By-Line Performance, et al.
Fecha de publicación: 2021
Editor/a: Institute of Electrical and Electronics Engineers (IEEE) 
Conferencia: 2021 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021 
Resumen: Remote sensing has gained relevance in the last years, mainly due to the emergence of UAVs carrying airborne imagery sensors. In this regard, the on-board data processing for on-the-fly making-decision applications is also gaining momentum. Nevertheless, these flight vehicles are still limited in terms of power budget and computational capacity, which hampers the handling of the hyperspectral data. Consequently, there is an emerging trend towards the development of more hardware-friendly algorithms suitable for an efficient implementation in parallel computing devices. In this sense, the LbL-FAD algorithm arose in response to the lack of causal anomaly detectors that could be easily integrated in push-broom-based acquisition systems. In this work, we have analysed the feasibility of the performance and power needs of the LbL-FAD algorithm in a mid-range re-configurable FPGA-SoC such as the XC7Z020 chip. Concretely, a highly optimized FPGA accelerator of the LbL-FAD method has been described for the line-by-line detection of anomalous spectra.
URI: http://hdl.handle.net/10553/114892
ISBN: 978-1-6654-0369-6
DOI: 10.1109/IGARSS47720.2021.9554801
Fuente: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, p. 1579-1582, (Enero 2021)
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

3
actualizado el 24-nov-2024

Visitas

80
actualizado el 17-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.