Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/114838
Campo DC Valoridioma
dc.contributor.authorAmoakoh, Alex Owusuen_US
dc.contributor.authorAplin, Paulen_US
dc.contributor.authorAwuah, Kwame T.en_US
dc.contributor.authorDelgado-Fernandez, Ireneen_US
dc.contributor.authorMoses, Cherithen_US
dc.contributor.authorPeña Alonso, Carolina Priscilaen_US
dc.date.accessioned2022-05-23T16:42:54Z-
dc.date.available2022-05-23T16:42:54Z-
dc.date.issued2021en_US
dc.identifier.isbn978-1-6654-0369-6en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/114838-
dc.description.abstractTropical peatlands such as Ghana’s Greater Amanzule peatland are important ecosystems due to the magnitude of their greenhouse gas emissions under human and climatic pressures. Accurate measurement of their occurrence and extent is required to facilitate sustainable management. A key challenge however is the high cloud coverage in the tropics that limits optical remote sensing data acquisition. We combined optical, radar and elevation data to optimise Land Use and Land Cover (LULC) classification for the Greater Amanzule tropical peatland. Sentinel-1, Sentinel-2 and SRTM data were acquired, and appropriate features were selected and integrated to develop a machine learning LULC classification using a Random Forest classifier. A total of six LULC classifications were made. Results showed that the best overall accuracy (OA) was found for the integrated Sentinel-1, Sentinel-2 and SRTM features (S1+S2+DEM), significantly outperforming all the other classifications with an OA of 94%, followed by the integrated Sentinel-1 and Sentinel-2 (S1+S2) (92%). Sentinel-1 only (S1) had the worse OA of 70%. The integration of more features systematically increased the classification accuracy. We estimated Ghana’s Greater Amanzule peatland at 60,187ha. Our proposed methodological framework contributes a robust workflow for accurate and detailed landscape-scale monitoring of tropical peatlands, while our findings and research outputs provide timely information critical for the sustainable management of the Greater Amanzule peatland.en_US
dc.languageengen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.source2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, p. 5910-5913, (Enero 2021)en_US
dc.subject2508 Hidrologíaen_US
dc.subject250501 Biogeografíaen_US
dc.subject.otherClassificationen_US
dc.subject.otherGoogle Earth Engineen_US
dc.subject.otherRandom Foresten_US
dc.subject.otherSentinelen_US
dc.subject.otherTropical Peatlanden_US
dc.titleTropical Peatland Classification Using Multi-Sensor Sentinel Imagery and Random Forest Algorithm in Greater Amanzule, Ghanaen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference2021 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021en_US
dc.identifier.doi10.1109/IGARSS47720.2021.9554615en_US
dc.identifier.scopus85129786799-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57223371564-
dc.contributor.authorscopusid6701865572-
dc.contributor.authorscopusid57204514082-
dc.contributor.authorscopusid32667474400-
dc.contributor.authorscopusid7004646988-
dc.contributor.authorscopusid57679745800-
dc.description.lastpage5913en_US
dc.description.firstpage5910en_US
dc.investigacionArtes y Humanidadesen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2021en_US
dc.identifier.conferenceidevents148972-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-HUMen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IOCAG: Geografía, Medio Ambiente y Tecnologías de la Información Geográfica-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Geografía-
crisitem.author.orcid0000-0002-8589-0553-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNamePeña Alonso, Carolina Priscila-
crisitem.event.eventsstartdate28-09-2006-
crisitem.event.eventsenddate30-09-2006-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

7
actualizado el 24-nov-2024

Visitas

84
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.