Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/114834
Título: | Modeling COVID-19 incidence by the renewal equation after removal of administrative bias and noise | Autores/as: | Alvarez, Luis Morel, Jean David Morel, Jean Michel |
Clasificación UNESCO: | 120601 Construcción de algoritmos 3202 Epidemologia |
Palabras clave: | Incidence curve Pandemic COVID-19 Reproduction kernel Time dependent reproduction number, et al. |
Fecha de publicación: | 2022 | Publicación seriada: | Biology | Resumen: | The sanitary crisis of the past two years has focused the public’s attention on quantitative indicators of the spread of the COVID-19 pandemic. The daily reproduction number Rt, defined by the average number of new infections caused by a single infected individual at time t, is one of the best metrics for estimating the epidemic trend. In this paper, we provide a complete observation model for sampled epidemiological incidence signals obtained through periodic administrative measurements. The model is governed by the classic renewal equation using an empirical reproduction kernel, and subject to two perturbations: a time-varying gain with a weekly period and a white observation noise. We estimate this noise model and its parameters by extending a variational inversion of the model recovering its main driving variable Rt . Using Rt, a restored incidence curve, corrected of the weekly and festive day bias, can be deduced through the renewal equation. We verify experimentally on many countries that, once the weekly and festive days bias have been corrected, the difference between the incidence curve and its expected value is well approximated by an exponential distributed white noise multiplied by a power of the magnitude of the restored incidence curve. | URI: | http://hdl.handle.net/10553/114834 | ISSN: | 2079-7737 | DOI: | 10.3390/biology11040540 | Fuente: | Biology [ISSN 2079-7737], n. 11 (4), 540 |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.