Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/114816
DC FieldValueLanguage
dc.contributor.authorPelegrí Llopart, Josep Luisen_US
dc.contributor.authorSangrá Inciarte, Pabloen_US
dc.date.accessioned2022-05-19T11:31:45Z-
dc.date.available2022-05-19T11:31:45Z-
dc.date.issued2014en_US
dc.identifier.isbn84-697-0471-0en_US
dc.identifier.urihttp://hdl.handle.net/10553/114816-
dc.description.abstractThe gradient Richardson number, Ri, is the classical index for dynamic vertical instability. It is generally viewed as a ratio between the stabilizing effects of buoyancy versus the destabilizing role of the (squared) vertical shear. The gradient Richardson number is small (subcritical when its value is less than one) when stratification is small enough and/or vertical shear is sufficiently large; under these circumstances the flow becomes unstable, prone to mixing. In this communication we carefully explore an alternative perspective, which arises in isopycnic coordinates: the gradient Richardson number is now a ratio between the inverse of vertical stratification and the (squared) shear in density coordinates (named the diapycnal shear). From this point of view the flow becomes unstable in well stratified conditions as long as the diapycnal shear remains moderately large (Pelegrí and Csanady, 1994; Pelegrí and Sangrà, 1998; Pelegrí et al., 1998). One important limitation of Ri, as an indicator of mixing, is that it cannot differentiate between mixing in stratified regions versus flow instability in already well-mixed waters. The isopycnic approach suggests that diapycnal shear is a most relevant variable for flow stability, yet it alone cannot assess the existence of unstable conditions. Therefore, we rewrite the instability condition as a reduced squared diapycnal shear, which is a function of both Ri and the stratification, and decreases monotonically with stratification. The above concepts are illustrated using data from three distinct regions: the shelf break south of Gran Canaria, the Gulf Stream and the Mediterranean outflow. It turns out that very often for Gran Canaria and the Mediterranean outflow, and only very rarely for the Gulf Stream, the conditions are subcritical. The variables are non-dimensionalized by means of the background stratification. The vertical shear, diapycnal shear and the reduced squared diapycnal shear are then plotted, as cloud points, as a function of stratification. The results confirm a dependence of the squared reduced diapycnal on stratification, which is characteristic for each particular flow dynamics.en_US
dc.languageengen_US
dc.sourceBook of Abstracts submitted to the IV Congress of Marine Sciences. Las Palmas de Gran Canaria, June 11th to 13th 2014, p. 67en_US
dc.subject251007 Oceanografía físicaen_US
dc.subject220404 Mecánica de fluidosen_US
dc.titleRethinking the gradient Richardson numberen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceIV Congress of Marine Sciencesen_US
dc.description.lastpage67en_US
dc.description.firstpage67en_US
dc.investigacionCienciasen_US
dc.type2Actas de congresosen_US
dc.description.numberofpages1en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-BASen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.orcid0000-0003-0661-2190-
crisitem.author.fullNamePelegrí Llopart, Josep Luis-
crisitem.author.fullNameSangrá Inciarte, Pablo-
crisitem.event.eventsstartdate11-06-2014-
crisitem.event.eventsenddate13-06-2014-
Appears in Collections:Actas de congresos
Adobe PDF (72,3 kB)
Show simple item record

Page view(s)

95
checked on Oct 31, 2024

Download(s)

18
checked on Oct 31, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.