Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/114787
DC FieldValueLanguage
dc.contributor.authorOrtega Zamorano, Franciscoen_US
dc.contributor.authorMarcelo A. Montemurroen_US
dc.contributor.authorSergio A. Cannasen_US
dc.contributor.authorJosé M. Jerezen_US
dc.contributor.authorLeonardo Francoen_US
dc.date.accessioned2022-05-18T08:49:38Z-
dc.date.available2022-05-18T08:49:38Z-
dc.date.issued2016en_US
dc.identifier.issn1045-9219en_US
dc.identifier.urihttp://hdl.handle.net/10553/114787-
dc.description.abstractA two-dimensional Ising model with nearest-neighbors ferromagnetic interactions is implemented in a Field Programmable Gate Array (FPGA) board.Extensive Monte Carlo simulations were carried out using an efficient hardware representation of individual spins and a combined global-local LFSR random number generator. Consistent results regarding the descriptive properties of magnetic systems, like energy, magnetization and susceptibility are obtained while a speed-up factor of approximately 6 times is achieved in comparison to previous FPGA-based published works and almost $10^4$ times in comparison to a standard CPU simulation. A detailed description of the logic design used is given together with a careful analysis of the quality of the random number generator used. The obtained results confirm the potential of FPGAs for analyzing the statistical mechanics of magnetic systems.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Transactions on Parallel and Distributed Systemsen_US
dc.sourceIEEE Transactions on Parallel and Distributed Systems [ISSN 1045-9219], v. 27(9), p. 2618 - 2627en_US
dc.subject330406 Arquitectura de ordenadoresen_US
dc.subject2203 Electrónicaen_US
dc.subject.otherHardware implementationen_US
dc.subject.otherLFSR random number generatoren_US
dc.subject.otherMonte Carlo simulationsen_US
dc.subject.otherIsing modelen_US
dc.titleFPGA Hardware Acceleration of Monte Carlo Simulations for the Ising Modelen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typearticleen_US
dc.identifier.doi10.1109/TPDS.2015.2505725en_US
dc.identifier.scopus2-s2.0-84982113681-
dc.identifier.isiWOS:000384238000011-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.issue9-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr1,129
dc.description.jcr4,181
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.orcid0000-0002-4397-2905-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameOrtega Zamorano,Francisco-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

15
checked on Nov 24, 2024

WEB OF SCIENCETM
Citations

14
checked on Nov 24, 2024

Page view(s)

64
checked on Oct 12, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.