Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/114745
Campo DC Valoridioma
dc.contributor.authorLópez-Rubio, Ezequielen_US
dc.contributor.authorOrtega Zamorano, Franciscoen_US
dc.contributor.authorDomínguez, Enriqueen_US
dc.contributor.authorMuñoz-Pérez, Joséen_US
dc.date.accessioned2022-05-16T18:51:26Z-
dc.date.available2022-05-16T18:51:26Z-
dc.date.issued2019en_US
dc.identifier.issn1370-4621en_US
dc.identifier.urihttp://hdl.handle.net/10553/114745-
dc.description.abstractSince the origins of artificial neural network research, many models of feedforward networks have been proposed. This paper presents an algorithm which adapts the shape of the activation function to the training data, so that it is learned along with the connection weights. The activation function is interpreted as a piecewise polynomial approximation to the distribution function of the argument of the activation function. An online learning procedure is given, and it is formally proved that it makes the training error decrease or stay the same except for extreme cases. Moreover, the model is computationally simpler than standard feedforward networks, so that it is suitable for implementation on FPGAs and microcontrollers. However, our present proposal is limited to two-layer, one-output-neuron architectures due to the lack of differentiability of the learned activation functions with respect to the node locations. Experimental results are provided, which show the performance of the proposal algorithm for classification and regression applications.en_US
dc.languageengen_US
dc.relation.ispartofNeural Processing Lettersen_US
dc.sourceNeural Processing Letters [ISSN 1370-4621], n. 50, p. 121-147en_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.subject.otherActivation functionsen_US
dc.subject.otherFeedforward neural networksen_US
dc.subject.otherSupervised learningen_US
dc.subject.otherRegressionen_US
dc.subject.otherClassificationen_US
dc.titlePiecewise polynomial activation functions for feedforward neural networksen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typearticleen_US
dc.identifier.doi10.1007/s11063-018-09974-4en_US
dc.identifier.scopus2-s2.0-85059832393-
dc.identifier.isiWOS:000479247900007-
dc.contributor.orcid0000-0001-8231-5687-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid0000-0002-2232-4562-
dc.contributor.orcid#NODATA#-
dc.description.lastpage147en_US
dc.identifier.issue1-
dc.description.firstpage121en_US
dc.relation.volume50en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,589
dc.description.jcr2,891
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.orcid0000-0002-4397-2905-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameOrtega Zamorano,Francisco-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.