Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/114624
Campo DC Valoridioma
dc.contributor.authorGómez Déniz, Emilioen_US
dc.contributor.authorCalderín Ojeda,Enriqueen_US
dc.contributor.authorGómez, Héctor W.en_US
dc.date.accessioned2022-05-09T14:50:19Z-
dc.date.available2022-05-09T14:50:19Z-
dc.date.issued2022en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/114624-
dc.description.abstractThe classical logit and probit models allow to explain a dichotomous dependent variable as a function of factors or covariates which can influence the response variable. This paper introduces a new skew-logit link for item response theory by considering the arctan transformation over the scobit logit model, yielding a very flexible link function from a new class of generalized distribution. This approach assumes an asymmetric model, which reduces to the standard logit model for a special case of the parameters that control the distribution’s symmetry. The model proposed is simple and allows us to estimate the parameters without using Bayesian methods, which requires implementing Markov Chain Monte Carlo methods. Furthermore, no special function appears in the formulation of the model. We compared the proposed model with the classical logit specification using three datasets. The first one deals with the well-known data collection widely studied in the statistical literature, concerning with mortality of adult beetle after exposure to gaseous carbon disulphide, the second one considers an automobile insurance portfolio. Finally, the third dataset examines touristic data related to tourist expenditure. For these examples, the results illustrate that the new model changes the significance level of some explanatory variables and the marginal effects. For the latter example, we have also modified the definition of the intercept in the linear predictor to prevent confounding.en_US
dc.languageengen_US
dc.relation.ispartofSymmetryen_US
dc.sourceSymmetry[EISSN 2073-8994],v. 14 (4), (Abril 2022)en_US
dc.subject530202 Modelos econométricosen_US
dc.subject.otherAsymmetryen_US
dc.subject.otherBinary Responseen_US
dc.subject.otherClaimen_US
dc.subject.otherInsuranceen_US
dc.subject.otherLinken_US
dc.subject.otherLogiten_US
dc.subject.otherScobiten_US
dc.titleAsymmetric versus symmetric binary regresion: a new proposal with applicationsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/sym14040733en_US
dc.identifier.scopus85128589951-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid15724912000-
dc.contributor.authorscopusid23479414700-
dc.contributor.authorscopusid10639386400-
dc.identifier.eissn2073-8994-
dc.identifier.issue4-
dc.relation.volume14en_US
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateAbril 2022en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-ECOen_US
dc.description.sjr0,483
dc.description.jcr2,7
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds10,6
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.orcid0000-0002-5072-7908-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.fullNameGómez Déniz, Emilio-
crisitem.author.fullNameCalderín Ojeda,Enrique-
Colección:Artículos
Adobe PDF (4,08 MB)
Vista resumida

Citas SCOPUSTM   

4
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

4
actualizado el 17-nov-2024

Visitas

100
actualizado el 16-nov-2024

Descargas

143
actualizado el 16-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.