Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/114598
Campo DC Valoridioma
dc.contributor.authorGupta, Ankiten_US
dc.contributor.authorRavelo-García, A.en_US
dc.contributor.authorDias, Fernando Morgadoen_US
dc.date.accessioned2022-05-06T09:55:03Z-
dc.date.available2022-05-06T09:55:03Z-
dc.date.issued2022en_US
dc.identifier.issn0169-2607en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/114598-
dc.description.abstractConsumer-level cameras have provided an advantage of designing cost-effective, non-contact physiological parameters estimation approaches which is not possible with gold standard estimation techniques. This encourages the development of non-contact estimation methods using camera technology. Therefore, this work aims to present a systematic review summarizing the currently existing face-based non-contact methods along with their performance. Methods: This review includes all heart rate (HR) and oxygen saturation (SpO2) studies published in journals and a few reputed conferences, which have compared the proposed estimation methods with one or more standard reference devices. The articles were collected from the following research databases: Institute of Electrical and Electronics Engineers (IEEE), PubMed, Web of Science (WoS), Science Direct, and Association of Computer Machinery (ACM) digital library. All database searches were completed on May 20, 2021. Each study was assessed using a finite set of identified factors for reporting bias. Results: Out of 332 identified studies, 32 studies were selected for the final review. Additionally, 18 studies were included by thoroughly checking these studies. 3 out of 50 (6%) studies were performed in clinical conditions, while the remaining studies were carried out on a healthy population. 42 out of 50 (84%) studies have estimated HR, while 5/50 (10%) studies have measured SpO2 only. The remaining three studies have estimated both parameters. The majority of the studies have used 1–3 min videos for estimation. Among the estimation methods, Deep Learning and Independent component analysis (ICA) were used by 11/42 (26.19%) and 9/42 (21.42%) studies, respectively. According to the Bland-Altman analysis, only 8/45 (17.77%) HR studies achieved the clinically accepted error limits whereas, for SpO2, 4/5 (80%) studies have matched the industry standards (±3%). Discussion: Deep Learning and ICA have been predominantly used for HR estimations. Among deep learning estimation methods, convolutional neural networks have been employed till date due to their good generalization ability. Most non-contact HR estimation methods need significant improvements to implement these methods in a clinical environment. Furthermore, these methods need to be tested on the subjects suffering from any related disease. SpO2 estimation studies are challenging and need to be tested by conducting hypoxemic events. The authors would encourage reporting the detailed information about the study population, the use of longer videos, and appropriate performance metrics and testing under abnormal HR and SpO2 ranges for future estimation studies.en_US
dc.languageengen_US
dc.relation.ispartofComputer Methods and Programs in Biomedicineen_US
dc.sourceComputer Methods and Programs in Biomedicine[ISSN 0169-2607],v. 219, (Junio 2022)en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherBlood Volume Pulseen_US
dc.subject.otherHeart Rateen_US
dc.subject.otherNon-Contact Estimation Approachesen_US
dc.subject.otherOxygen Saturationen_US
dc.subject.otherPhysiological Parametersen_US
dc.titleAvailability and performance of face based non-contact methods for heart rate and oxygen saturation estimations: A systematic reviewen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.cmpb.2022.106771en_US
dc.identifier.scopus85127338713-
dc.contributor.orcid0000-0002-2310-908X-
dc.contributor.orcid0000-0002-8512-965X-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57220893301-
dc.contributor.authorscopusid9634135600-
dc.contributor.authorscopusid57557156200-
dc.identifier.eissn1872-7565-
dc.relation.volume219en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateJunio 2022en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,118
dc.description.jcr6,1
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds11,0
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

23
actualizado el 30-mar-2025

Citas de WEB OF SCIENCETM
Citations

20
actualizado el 30-mar-2025

Visitas

136
actualizado el 01-mar-2025

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.