Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/114060
Campo DC Valoridioma
dc.contributor.authorArumí Planas, Cristinaen_US
dc.contributor.authorHernández Guerra, Alonsoen_US
dc.contributor.authorCainzos Díaz, Verónicaen_US
dc.contributor.authorVélez Belchí,Pedroen_US
dc.contributor.authorFarneti, Riccardoen_US
dc.contributor.authorMazloff, Matthew R.en_US
dc.contributor.authorMecking, Sabineen_US
dc.contributor.authorRosso, Isabellaen_US
dc.contributor.authorSchulze Chretien, Lena M.en_US
dc.contributor.authorSpeer, Kevin G.en_US
dc.contributor.authorTalley, Lynne D.en_US
dc.date.accessioned2022-03-15T09:56:12Z-
dc.date.available2022-03-15T09:56:12Z-
dc.date.issued2022en_US
dc.identifier.issn0079-6611en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/114060-
dc.description.abstractThe meridional circulation and transport at 32°S in the Pacific Ocean in 1992 and 2017 are compared with analogous data from 2003 and 2009 computed by Hernández-Guerra and Talley (2016). The hydrographic data come from the GO-SHIP database and an inverse box model has been applied with similar constraints as in Hernández-Guerra and Talley (2016). In 1992, 2003 and 2017 the pattern of the overturning streamfunction and circulation are similar, but in 2009 the pattern of the circulation changes in the whole water column. The horizontal distribution of mass transports at all depths in 1992 and 2017 resembles the familiar shape of the “classical gyre” also observed in 2003 and is notably different to the “bowed gyre” found in 2009. The hydrographic data have been compared with data obtained from the numerical modelling outputs of ECCO, SOSE, GLORYS, and MOM. Results show that none of these models properly represents the “bowed gyre” circulation in 2009, and this change in circulation pattern was not observed during the entire length of model simulations. Additionally, the East Australian Current in the western boundary presents higher mass transport in the hydrographic data than in any numerical modelling output. Its poleward mass transport ranges from −35.1 ± 2.0 Sv in 1992 to −54.3 ± 2.6 Sv in 2003. Conversely, the Peru-Chile Current is well represented in models and presents an equatorward mass transport from 2.3 ± 0.8 Sv in 2009 to 4.4 ± 1.0 Sv in 1992. Furthermore, the Peru-Chile Undercurrent presents a more intense poleward mass transport in 2009 (−3.8 ± 1.2 Sv). In addition, the temperature and freshwater transports in 1992 (0.42 ± 0.12 PW and 0.26 ± 0.08 Sv), 2003 (0.38 ± 0.12 PW and 0.25 ± 0.02 Sv), and 2017 (0.42 ± 0.12 PW and 0.34 ± 0.08 Sv) are similar, but significantly different from those in 2009 (0.16 ± 0.12 PW and 0.50 ± 0.03 Sv, respectively). To clarify the causes of these different circulation schemes, a linear Rossby wave model is adopted, which includes the wind-stress curl variability as remote forcing and the response to sea surface height changes along 30°S.en_US
dc.languageengen_US
dc.relationEl Portal Sudatlántico en la Cinta Transportadora Globalen_US
dc.relation.ispartofProgress in Oceanographyen_US
dc.sourceProgress in Oceanography [ISSN 0079-6611], v. 203, 102780, (Abril-Mayo 2022)en_US
dc.subject2510 Oceanografíaen_US
dc.subject.otherPhysical Oceanographyen_US
dc.subject.otherClimate Changeen_US
dc.subject.otherGlobal Circulationen_US
dc.subject.otherPacific Oceanen_US
dc.titleVariability in the meridional overturning circulation at 32°S in the Pacific Ocean diagnosed by inverse box modelsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typearticleen_US
dc.identifier.doi10.1016/j.pocean.2022.102780en_US
dc.identifier.scopus85126306781-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57487784200-
dc.contributor.authorscopusid6701736545-
dc.contributor.authorscopusid57212651551-
dc.contributor.authorscopusid7801599223-
dc.contributor.authorscopusid14019572700-
dc.contributor.authorscopusid15750860000-
dc.contributor.authorscopusid7003647022-
dc.contributor.authorscopusid56224189800-
dc.contributor.authorscopusid57204216863-
dc.contributor.authorscopusid7005168780-
dc.contributor.authorscopusid7004902765-
dc.relation.volume203en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateAbril 2022en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr1,198-
dc.description.jcr4,1-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
dc.description.miaricds11,0-
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.project.principalinvestigatorHernández Guerra, Alonso-
crisitem.author.deptGIR IOCAG: Oceanografía Física-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptGIR IOCAG: Oceanografía Física-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Física-
crisitem.author.deptGIR IOCAG: Oceanografía Física-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.orcid0000-0001-5700-3550-
crisitem.author.orcid0000-0002-4883-8123-
crisitem.author.orcid0000-0003-2666-1862-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameArumí Planas, Cristina-
crisitem.author.fullNameHernández Guerra, Alonso-
crisitem.author.fullNameCainzos Díaz,Verónica-
crisitem.author.fullNameVélez Belchí,Pedro-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

1
actualizado el 24-mar-2024

Visitas

66
actualizado el 23-sep-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.