Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/114052
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Croci, Simone | en_US |
dc.contributor.author | Ozcinar, Cagri | en_US |
dc.contributor.author | Zerman, Emin | en_US |
dc.contributor.author | Dudek, Roman | en_US |
dc.contributor.author | Knorr, Sebastian | en_US |
dc.contributor.author | Smolic, Aljosa | en_US |
dc.date.accessioned | 2022-03-14T11:36:17Z | - |
dc.date.available | 2022-03-14T11:36:17Z | - |
dc.date.issued | 2021 | en_US |
dc.identifier.isbn | 978-1-6654-4115-5 | en_US |
dc.identifier.issn | 1522-4880 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/114052 | - |
dc.description.abstract | Color mismatch in stereoscopic 3D (S3D) images can create visual discomfort and affect the performance of S3D image processing algorithms, e.g., for depth estimation. In this paper, we propose a new deep learning-based solution for the problem of color mismatch correction. The proposed solution consists of a multi-task convolutional neural network, where color correction is the primary task and correspondence estimation is the secondary task. For the training and evaluation of the proposed network, a new S3D image dataset with color mismatch was created. Based on this dataset, experiments were conducted showing the effectiveness of our solution. | en_US |
dc.language | eng | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.relation.ispartof | Proceedings - International Conference on Image Processing | en_US |
dc.source | Proceedings - International Conference on Image Processing, ICIP [ISSN 1522-4880], v. 2021-September, p. 1749-1753, (Enero 2021) | en_US |
dc.subject | 220990 Tratamiento digital. Imágenes | en_US |
dc.subject.other | Color Correction | en_US |
dc.subject.other | Color Mismatch | en_US |
dc.subject.other | Convolutional Neural Network | en_US |
dc.subject.other | Stereoscopic 3D | en_US |
dc.title | Deep color mismatch correction in stereoscopic 3D images | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | en_US |
dc.type | ConferenceObject | en_US |
dc.relation.conference | IEEE International Conference on Image Processing (ICIP 2021) | en_US |
dc.identifier.doi | 10.1109/ICIP42928.2021.9506036 | en_US |
dc.identifier.scopus | 85125598898 | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.authorscopusid | 24167904800 | - |
dc.contributor.authorscopusid | 35847657400 | - |
dc.contributor.authorscopusid | 55293743300 | - |
dc.contributor.authorscopusid | 23472518100 | - |
dc.contributor.authorscopusid | 8268630500 | - |
dc.contributor.authorscopusid | 6602582385 | - |
dc.identifier.eissn | 1522-4880 | - |
dc.description.lastpage | 1753 | en_US |
dc.description.firstpage | 1749 | en_US |
dc.relation.volume | 2021-September | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.identifier.eisbn | 978-1-6654-3102-6 | - |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Enero 2021 | en_US |
dc.identifier.conferenceid | events130136 | - |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.event.eventsstartdate | 19-09-2021 | - |
crisitem.event.eventsenddate | 22-09-2021 | - |
crisitem.author.fullName | Dudek -, Roman | - |
Colección: | Actas de congresos |
Visitas
40
actualizado el 13-ene-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.