Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/113883
Título: | PSO-based adaptive hierarchical interval type-2 fuzzy knowledge representation system (PSO-AHIT2FKRS) for travel route guidance | Autores/as: | Zouari, Mariam Baklouti, Nesrine Sánchez Medina, Javier Jesús Kammoun, Habib M. Ayed, Mounir Ben Alimi, Adel M. |
Clasificación UNESCO: | 120317 Informática 120903 Análisis de datos 3327 Tecnología de los sistemas de transporte |
Palabras clave: | Hierarchical interval type-2 fuzzy system Fuzzy logic Traffic congestion Dynamic travel route guidance Traffic simulation, et al. |
Fecha de publicación: | 2022 | Publicación seriada: | IEEE Transactions on Intelligent Transportation Systems | Resumen: | Urban Traffic Networks are characterized by their high dynamics and increased traffic congestion cases, leading to a more complex road traffic management. The present research work suggests an innovative advanced vehicle guidance system based on Hierarchical Interval Type-2 Fuzzy Logic model optimized by the Particle Swarm Optimization (PSO) method. Indeed, this system allows an intelligent and prompt adjustment of the road traffic network in a dynamic way and improves the entire road network quality, particularly in case of congestions or jams, considering real-time traffic information. The best followed road is selected according to the quality of traffic and route length, together with contextual factors pertaining to the driver, the environment, and the path. The proposed system is executed and simulated using SUMO (Simulation of Urban Mobility), for which four large areas situated in the cities of Sfax, Luxembourg, Bologna and Cologne have been tested. The simulation results proved the effectiveness of learning the Hierarchical Interval Type-2 Fuzzy Logic model using PSO real time technique to accomplish multi-objective optimality regarding two criteria: number of cars that attain their destination and average travel time. The obtained results have confirmed the efficiency of the proposed system. | URI: | http://hdl.handle.net/10553/113883 | ISSN: | 1524-9050 | DOI: | 10.1109/TITS.2020.3016054 | Fuente: | IEEE Transactions on Intelligent Transportation Systems [ISSN 1524-9050], v. 23 (2), p. 804-818, (Febrero 2022) |
Colección: | Artículos |
Citas SCOPUSTM
21
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
19
actualizado el 15-dic-2024
Visitas
173
actualizado el 31-oct-2024
Descargas
365
actualizado el 31-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.