Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/113776
Título: Performance of Speckle Filters for COSMO-SkyMed Images From the Brazilian Amazon
Autores/as: Kuck, TN
Gómez Déniz, Luis 
Sano, EE
Bispo, PD
Honorio, DDC
Clasificación UNESCO: 250616 Teledetección (Geología)
Palabras clave: SAR images
Speckle filtering
Tropical forest
X-band
Fecha de publicación: 2021
Publicación seriada: IEEE Geoscience and Remote Sensing Letters 
Resumen: Speckle filtering is an important step for target detection in SAR images since this effect makes it difficult or even impossible to extract information from these images. There are several filters available in the literature although evaluating their performances is not a trivial task since it requires comparing the filtered images with a speckle-free image, which is generally unknown. This evaluation is even more complex when the features in the images are heterogeneous, for example, from tropical forests. The objective of this study is to evaluate the performance of the Lee, deGrandi, GammaMAP, single Anisotropic Nonlinear Diffusion (ANLD), multitemporal ANLD, Fast Adaptive Nonlocal SAR (FANS), and Fast GPU-Based Enhanced Wiener filters to reduce the speckle present in the COSMO-SkyMed Stripmap X-band images from the Brazilian Amazon forest region. The evaluation was conducted qualitatively through the visual inspection of the ratio image and the edge detection in the ratio images and quantitatively through the $\alpha \beta $ estimator and other statistical parameters of the filtered images. The GammaMAP filter showed the best performances, both qualitatively and quantitatively, and the FANS filter only qualitative.
URI: http://hdl.handle.net/10553/113776
ISSN: 1545-598X
DOI: 10.1109/LGRS.2021.3057263
Fuente: IEEE Geoscience and Remote Sensing Letters [ISSN 1545-598X], n. 19
Colección:Artículos
Vista completa

Citas SCOPUSTM   

3
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

4
actualizado el 17-nov-2024

Visitas

95
actualizado el 07-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.