Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/113695
Title: | Adaptation of the CCSDS 123.0-B-2 Standard for RGB and Multispectral Video Compression | Authors: | Barrios Alfaro, Yubal Guerra, Raul Lopez, Sebastian Sarmiento, Roberto |
UNESCO Clasification: | 3307 Tecnología electrónica | Keywords: | Ccsds Complexity Theory Hardware Image Coding Multispectral Imaging, et al |
Issue Date: | 2022 | Journal: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | Abstract: | The integration of video sensors on-board satellites is becoming a trend in the space industry, since they provide extra information in the temporal domain when compared with traditional remote sensing imaging acquisition equipment. The inclusion of the temporal dimension together with the constant increase of the sensor resolution supposes a challenge for onboard processing, taking into account the limited computational and storage resources on-board satellites and that it is unfeasible to directly transmit raw video to ground, due to downlink bandwidth limitations. For these reasons, on-board video compression is needed. However, the inherent complexity of the video encoders used on ground limits their implementation on environments with high constraints in terms of computational burden, area and power consumption. This work proposes an extended compression chain that implements as compression core the CCSDS-123.0-B-2 standard, originally developed for nearlossless compression of multi- and hyperspectral images, but including preprocessing stages to manage the temporal dimension of RGB and multispectral video efficiently. The proposed solution guarantees low complexity and flexibility to compress both multiand hyperspectral images, and panchromatic and multispectral video by using a single compression instance, which is adapted by adding or removing the appropriate stages. Results demonstrate the viability of this solution to be implemented on space payloads, since high compression ratios are achieved without incurring in a penalty in terms of video quality. | URI: | http://hdl.handle.net/10553/113695 | ISSN: | 1939-1404 | DOI: | 10.1109/JSTARS.2022.3145751 | Source: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [ISSN 1939-1404], v. 15, p. 1656-1669, (2022) |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
4
checked on Nov 24, 2024
WEB OF SCIENCETM
Citations
3
checked on Nov 24, 2024
Page view(s)
115
checked on Aug 3, 2024
Download(s)
80
checked on Aug 3, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.