Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/113321
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.advisor | Fernández López, Pablo Carmelo | es |
dc.contributor.advisor | Suárez Araujo, Carmen Paz | es |
dc.contributor.author | Arrocha Quevedo, Samuel | es |
dc.date.accessioned | 2022-01-16T21:03:02Z | - |
dc.date.available | 2022-01-16T21:03:02Z | - |
dc.date.issued | 2022 | - |
dc.identifier.other | Gestión académica | - |
dc.identifier.uri | http://hdl.handle.net/10553/113321 | - |
dc.description.abstract | Desde que la COVID-19 se convirtió en pandemia, supuso una emergencia sanitaria mundial. Urge detectarla tempranamente. Proponemos Sistemas Inteligentes (SI), basados en Redes Neuronales Convolucionales (CNN), para detección temprana de la COVID-19 mediante Radiografías (RX) y Tomografías Computerizadas (TC). Para la experimentación se aplican dos datasets, "covid-chestxray-dataset" [1] para las RX y "COVID-CT" para las TC [2]. Se desarrollan y analizan dos modelos. El modelo RX alcanza una precisión de 95% y una sensibilidad de 96%, mientras que para el desarrollado con TC, la precisión lograda es de 96% y la sensibilidad de 96%. Se concluye la capacidad de las CNN en la ayuda al diagnóstico COVID-19 y las RX y TC como pruebas diagnósticas. | en_US |
dc.language | spa | en_US |
dc.subject | 120317 Informática | en_US |
dc.title | Hacia un Sistema Inteligente de ayuda al diagnóstico de la COVID-19 mediante imágenes de Radiografías y/o Tomografías por Computador de la zona pulmonar y vías respiratorias de los pacientes | es |
dc.type | info:eu-repo/semantics/bachelorThesis | en_US |
dc.type | BachelorThesis | en_US |
dc.contributor.departamento | Departamento de Informática y Sistemas | es |
dc.contributor.facultad | Escuela de Ingeniería Informática | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Trabajo final de grado | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.matricula | TFT-63057 | es |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | es |
dc.contributor.titulacion | Grado en Ingeniería Informática | es |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.advisor.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.advisor.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.advisor.dept | Departamento de Informática y Sistemas | - |
crisitem.advisor.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.advisor.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.advisor.dept | Departamento de Informática y Sistemas | - |
Colección: | Trabajo final de grado |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.