Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/113194
Campo DC Valoridioma
dc.contributor.authorAlonso Hernández, Jesús Bernardinoen_US
dc.contributor.authorBarragán Pulido, María Luisaen_US
dc.contributor.authorGil Bordón, José Manuelen_US
dc.contributor.authorFerrer Ballester, Miguel Ángelen_US
dc.contributor.authorTravieso González, Carlos Manuelen_US
dc.date.accessioned2022-01-11T10:59:12Z-
dc.date.available2022-01-11T10:59:12Z-
dc.date.issued2022en_US
dc.identifier.issn0957-4174en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/113194-
dc.description.abstractThe used of speech analysis in detection or evolutionary control of Alzheimer's disease and the numerous advantages that it has proven to have as screening method make that, to day, it continues raising interest in researchers. At the present day, the most recent studies are focus on automatic analysis of speech recordings rather than in the possible influence of the methodology used for obtain these recordings. The main aim of this work is to find out whether the results obtained after analyzing the recordings obtained by means of an automatic interviewer have the same statistical significance as those obtained from a human interviewer in relation to the detection or evolutionary control of Alzheimer's disease. To this effect, two methodologies for acquiring audio recordings have been compared. The first one is focuses on the use of a human interviewer to generate spontaneous speech and the second one makes use of an automatic system that, by means of visual stimuli, invites the subject to speak. For carrying out this study, Cross-Sectional Alzheimer Prognosis R2019 database has been used, in which the same speakers with AD and control have been recorded following both methodologies. A characteristics extraction process based on 5 basic temporal measures has been applied to each speech sample. Subsequently, the results obtained have been submitted to a univariate statistical analysis and a multivariate analysis in order to evaluate the discriminative capacity obtained with each methodology. The results of the statistical study of these five temporal measures used show that, regardless the methodology used in speech generation, is possible discriminate Alzheimer's patients. Furthermore, in some cases, the results obtained for the automatic interviewer have achieved performances close to those of the traditional human interviewer. These results are promising and can serve as the basis to learn about its effectiveness and extension and to further deepen the automation of interviews, especially in telemedicine and teleservice scenarios.en_US
dc.languageengen_US
dc.relation.ispartofExpert Systems with Applicationsen_US
dc.sourceExpert Systems with Applications[ISSN 0957-4174],v. 192, (Abril 2022)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherAlzheimer'S Diseaseen_US
dc.subject.otherAutomatic Intervieweren_US
dc.subject.otherAutomatic Voice Recognitionen_US
dc.subject.otherTelecareen_US
dc.subject.otherTelemedicineen_US
dc.titleSpeech evaluation of patients with Alzheimer's disease using an automatic intervieweren_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.eswa.2021.116386en_US
dc.identifier.scopus85121564586-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57219634167-
dc.contributor.authorscopusid57204392907-
dc.contributor.authorscopusid57222815158-
dc.contributor.authorscopusid56126176900-
dc.contributor.authorscopusid57219115631-
dc.relation.volume192en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateAbril 2022en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,873
dc.description.jcr8,5
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds11,0
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-7866-585X-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameAlonso Hernández, Jesús Bernardino-
crisitem.author.fullNameBarragán Pulido, María Luisa-
crisitem.author.fullNameGil Bordón, José Manuel-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

3
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

3
actualizado el 15-dic-2024

Visitas

86
actualizado el 27-abr-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.