Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/112597
Campo DC Valoridioma
dc.contributor.authorPérez Díaz, Baltasaren_US
dc.contributor.authorAraña Pulido, Víctor A.en_US
dc.contributor.authorCabrera-Almeida, Franciscoen_US
dc.contributor.authorDorta-Naranjo, B. Pabloen_US
dc.date.accessioned2021-11-09T16:46:14Z-
dc.date.available2021-11-09T16:46:14Z-
dc.date.issued2021en_US
dc.identifier.issn0018-9456en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/112597-
dc.description.abstractIEEEThis paper presents an amplitude and 360° phase shift array measurement system. The basic cell of the measurement system uses a novel amplitude and phase detector based on switched dual multipliers. The phase shift measurement is characterized by using an analog phase detector (mixer), detecting a maximum range of ±90°, and a double multiplication of the input signals, in phase and phase shifted. This method broadens the frequency and amplitude range beyond other solutions that require fulfilling the quadrature condition. This method broadens the frequency and amplitude beyond other solutions requiring fulfilling the quadrature condition or phase and amplitude balance. Thus, it enables to compensate significant phase imbalance in the 90° hybrid or use amplitudes out of the range that ensures the switching operation of mixer diodes. The circuit calibration that allows compensation for errors (amplitude, phase shift, mismatching, etc.) is detailed, and its relation to the required measurement accuracy is discussed. The design can be easily extrapolated to other frequency ranges because it uses commercial RF devices available in a wide frequency range and avoids the need of crossing lines or complex 90° hybrid. A prototype with 3x3 cells has been built to evaluate various test conditions on 1x3 cell configurations that show the advantages of the procedure. It should be highlighted that the cell prototype uses devices that will be operating outside the frequency and amplitude ranges recommended by their manufacturers. A calibration from 2.6 GHz to 6 GHz and -15dBm to -3dBm was performed to evaluate the measurement errors. An analysis of the isolation between cells and different calibration configurations is performed to analyze the measurement errors. Measurements show compensation of +30°/-25° phase imbalance and 13dB power lower than mixer manufacturer recommendation.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Transactions on Instrumentation and Measurementen_US
dc.sourceIEEE Transactions on Instrumentation and Measurement [ISSN 0018-9456], v. 70, 8005411, (Enero 2021)en_US
dc.subject.other360° Dual Multiplier Phase Detectoren_US
dc.subject.otherAmplitude Measurementen_US
dc.subject.otherAnalog Phase Detectoren_US
dc.subject.otherAntenna Measurementsen_US
dc.subject.otherCalibrated Rf Array Measurementsen_US
dc.subject.otherCalibrationen_US
dc.subject.otherPhase Shift Measurementen_US
dc.subject.otherRadio Frequencyen_US
dc.titlePhase shift and amplitude array measurement system based on 360° switched dual multiplier phase detectoren_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TIM.2021.3120132en_US
dc.identifier.scopus85117776677-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid37077667000-
dc.contributor.authorscopusid57310740500-
dc.contributor.authorscopusid57311104000-
dc.contributor.authorscopusid57310919800-
dc.identifier.eissn1557-9662-
dc.description.lastpage11en_US
dc.description.firstpage1en_US
dc.relation.volume70en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2021en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,178
dc.description.jcr5,332
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds11,0
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Ingeniería de Comunicaciones-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptGIR IDeTIC: División de Ingeniería de Comunicaciones-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Ingeniería de Comunicaciones-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Ingeniería de Comunicaciones-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-6664-9983-
crisitem.author.orcid0000-0002-5919-9224-
crisitem.author.orcid0000-0003-1869-1164-
crisitem.author.orcid0000-0002-9994-0646-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNamePérez Díaz, Baltasar-
crisitem.author.fullNameAraña Pulido, Víctor Alexis-
crisitem.author.fullNameCabrera Almeida, Francisco José-
crisitem.author.fullNameDorta Naranjo, Blas Pablo-
Colección:Artículos
Adobe PDF (6,73 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.