Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/112248
Título: Model Based Simulation and Genetic Algorithm Based Optimisation of Spiral Wound Membrane RO Process for Improved Dimethylphenol Rejection from Wastewater
Autores/as: Al-Obaidi, MA
Ruiz García, Alejandro 
Hassan, G
Li, JP
Kara-Zaitri, C
De La Nuez Pestana, Ignacio Agustín 
Mujtaba, IM
Clasificación UNESCO: 330806 Regeneración del agua
330602 Aplicaciones eléctricas
3308 Ingeniería y tecnología del medio ambiente
330810 Tecnología de aguas residuales
330304 Separación química
Palabras clave: Wastewater treatment
Spiral wound reverse osmosis
Modelling
Species conserving genetic algorithm optimisation
Dimethylphenol removal, et al.
Fecha de publicación: 2021
Publicación seriada: Membranes 
Resumen: Reverse Osmosis (RO) has already proved its worth as an efficient treatment method in chemical and environmental engineering applications. Various successful RO attempts for the rejection of organic and highly toxic pollutants from wastewater can be found in the literature over the last decade. Dimethylphenol is classified as a high-toxic organic compound found ubiquitously in wastewater. It poses a real threat to humans and the environment even at low concentration. In this paper, a model based framework was developed for the simulation and optimisation of RO process for the removal of dimethylphenol from wastewater. We incorporated our earlier developed and validated process model into the Species Conserving Genetic Algorithm (SCGA) based optimisation framework to optimise the design and operational parameters of the process. To provide a deeper insight of the process to the readers, the influences of membrane design parameters on dimethylphenol rejection, water recovery rate and the level of specific energy consumption of the process for two different sets of operating conditions are presented first which were achieved via simulation. The membrane parameters taken into consideration include membrane length, width and feed channel height. Finally, a multi-objective function is presented to optimise the membrane design parameters, dimethylphenol rejection and required energy consumption. Simulation results affirmed insignificant and significant impacts of membrane length and width on dimethylphenol rejection and specific energy consumption, respectively. However, these performance indicators are negatively influenced due to increasing the feed channel height. On the other hand, optimisation results generated an optimum removal of dimethylphenol at reduced specific energy consumption for a wide sets of inlet conditions. More importantly, the dimethylphenol rejection increased by around 2.51% to 98.72% compared to ordinary RO module measurements with a saving of around 20.6% of specific energy consumption.
URI: http://hdl.handle.net/10553/112248
ISSN: 2077-0375
DOI: 10.3390/membranes11080595
Fuente: Membranes [ISSN 2077-0375], v. 11(8), 595, (Agosto 2021)
Colección:Artículos
Adobe PDF (18,48 MB)
Vista completa

Citas SCOPUSTM   

11
actualizado el 21-abr-2024

Visitas

77
actualizado el 16-mar-2024

Descargas

65
actualizado el 16-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.