Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/112116
Título: | Efficiency analysis of a truncated flip-FBMC in burst optical transmission | Autores/as: | Bahaaelden, Mohammed S. Ortega, Beatriz Pérez Jiménez, Rafael Renfors, Markku |
Clasificación UNESCO: | 3325 Tecnología de las telecomunicaciones | Palabras clave: | Filter Bank Multicarrier (FBMC) Flip-OFDM Hard Truncation Methods Heisenberg Factor Interference Approximation Method, et al. |
Fecha de publicación: | 2021 | Publicación seriada: | IEEE Access | Resumen: | A novel Flip-filter bank multicarrier (Flip-FBMC)-based transmultiplexer (TMUX) with offset quadrature amplitude modulation is proposed to enhance the transmission performance compared to a conventional Flip-OFDM system. Moreover, the possibility to reduce the TMUX response (latency) and increase spectral efficiency is investigated for the first time through a tail shortening method. The proposed design is based on a biorthogonal form for visible light communication (VLC) to increase the flexibility of design requirements. However, spectral efficiency suffers from the ramp-up and the ramp-down at the beginning and end, respectively, of a data burst. Hence, as a penalty, Flip-FBMC imposes 9 more symbols than a Flip-OFDM packet and two factors compared to a DCO-FBMC burst. Hard truncation of the lowest energy tail minimizes latency and limits the system penalty to 2.5 symbols, which is lower than that of DCO-FBCM by 2 symbols. The results show that the prototype filter of the Heisenberg factor ( $\approx 1$ ) is highly effective in reducing the energy loss of truncated tails and reduces the symbol error rate (SER). The Flip-FBMC gain over a direct line-of-sight VLC channel is analyzed, and the channel estimation of a truncated burst, which is based on the interference approximation method (IAM) of IAM-C type, exhibits a superior performance of 1.5 dB at 10-3 SER over the IAM-R method and 1 dB at 10-5 SNR over a cyclic prefix of 1 point Flip-OFDM. On the other hand, the analysis reveals that IAM-C is slightly impacted by the truncated burst compared to the nontruncated version. | URI: | http://hdl.handle.net/10553/112116 | ISSN: | 2169-3536 | DOI: | 10.1109/ACCESS.2021.3096660 | Fuente: | IEEE Access [EISSN 2169-3536], v. 9, p. 100558-100569, (Enero 2021) |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.