Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/112107
Campo DC Valoridioma
dc.contributor.authorDagdeviren, Omur E.en_US
dc.contributor.authorGlass, Danielen_US
dc.contributor.authorSapienza, Riccardoen_US
dc.contributor.authorCortés, Emilianoen_US
dc.contributor.authorMaier, Stefan A.en_US
dc.contributor.authorParkin, Ivan. P.en_US
dc.contributor.authorGrütter, Peteren_US
dc.contributor.authorQuesada Cabrera, Raúlen_US
dc.date.accessioned2021-10-05T11:12:59Z-
dc.date.available2021-10-05T11:12:59Z-
dc.date.issued2021en_US
dc.identifier.issn1530-6984en_US
dc.identifier.urihttp://hdl.handle.net/10553/112107-
dc.description.abstractMetal-oxide semiconductors (MOS) are widely utilized for catalytic and photocatalytic applications in which the dynamics of charged carriers (e.g., electrons, holes) play important roles. Under operation conditions, photoinduced surface oxygen vacancies (PI-SOV) can greatly impact the dynamics of charge carriers. However, current knowledge regarding the effect of PISOV on the dynamics of hole migration in MOS films, such as titanium dioxide, is solely based upon volume-averaged measurements and/or vacuum conditions. This limits the basic understanding of hole-vacancy interactions, as they are not capable of revealing time-resolved variations during operation. Here, we measured the effect of PI-SOV on the dynamics of hole migration using time-resolved atomic force microscopy. Our findings demonstrate that the time constant associated with hole migration is strongly affected by PI-SOV, in a reversible manner. These results will nucleate an insightful understanding of the physics of hole dynamics and thus enable emerging technologies, facilitated by engineering hole-vacancy interactions.en_US
dc.languageengen_US
dc.relation.ispartofNano Lettersen_US
dc.sourceNano Letters [ISSN 1530-6984], v. 21 (19), p. 8348–8354en_US
dc.subject2391 Química ambientalen_US
dc.subject3303 ingeniería y tecnología químicasen_US
dc.subject220206 Radiación infrarroja, visible y ultravioletaen_US
dc.subject.otherTime-resolved atomic force microscopyen_US
dc.subject.otherDefected metal-oxide semiconductorsen_US
dc.subject.otherTitanium dioxide (TiO2)en_US
dc.subject.otherUltraviolet irradiationen_US
dc.subject.otherSurface defectsen_US
dc.titleThe Effect of Photoinduced Surface Oxygen Vacancies on the Charge Carrier Dynamics in TiO2 Filmsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typearticleen_US
dc.identifier.doi10.1021/acs.nanolett.1c02853en_US
dc.identifier.pmid34582208-
dc.identifier.scopus2-s2.0-85117109870-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid0000-0002-6288-9250-
dc.identifier.issue19-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.description.observacionesThis work was supported by the Natural Sciences and Engineering Research Council of Canada and Le Fonds de Recherche du Québec - Nature et Technologies. O.E.D. also gratefully acknowledges funds provided by É cole de technologie supérieure, University of Québec. D.G. acknowledges funding from the UK MOD for the Ph.D. under Contract No. DSTLX-1000116630. R.Q.C. would thanks the Beatriz Galindo Program, Ministerio de Educación y Formación Profesional, Spain. S.A.M. and E.C. acknowledge funding and support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy−EXC 2089/1-390776260, the Bavarian program Solar Energies Go Hybrid (SolTech), the Center for NanoScience (CeNS). S.A.M. additionally acknowledges the Lee-Lucas Chair in Physics. E.C. acknowledges the European Commission through the ERC Starting Grant CATALIGHT (802989). I.P.P. acknowledges support from EPSRC Centre of Doctoral Training in Molecular Modelling and Material Science under Grant No. EP/L015862/1. The authors also acknowledge support from EPSRC-UK under Grant No. EP/ M013812/1, Reactive Plasmonics. The authors acknowledge financial support from the EPSRC Grant No. EP/R034540/1 for the JSPS-EPSRC-McGill University collaboration on “Defect Functionalized Sustainable Energy Materials: From Design to Devices Application”en_US
dc.identifier.external121255581-
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr3,761-
dc.description.jcr12,262-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
dc.description.miaricds10,8-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUNAT: Fotocatálisis y espectroscopía para aplicaciones medioambientales.-
crisitem.author.deptIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.orcid0000-0002-6288-9250-
crisitem.author.parentorgIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.fullNameCortés ,Emiliano-
crisitem.author.fullNameQuesada Cabrera, Raúl-
Colección:Artículos
Adobe PDF (1,45 MB)
Vista resumida

Citas SCOPUSTM   

29
actualizado el 12-may-2024

Visitas

62
actualizado el 17-feb-2024

Descargas

169
actualizado el 17-feb-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.