Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/112025
Título: A Multi-Agent system for road traffic decision making based on Hierarchical Interval Type-2 Fuzzy Knowledge Representation System
Autores/as: Zouari, Mariam
Baklouti, Nesrine
Kammoun, M. Habib
Ayed, Mounir Ben
Alimi, Adel M.
Sánchez-Medina, Javier J. 
Clasificación UNESCO: Investigación
Palabras clave: Cooperative Multi-Agent System
Hit2Fls
Interval Type-2 Fuzzy Logic
Road Safety
Route Guidance, et al.
Fecha de publicación: 2021
Editor/a: Institute of Electrical and Electronics Engineers (IEEE) 
Publicación seriada: IEEE International Conference on Fuzzy Systems 
Conferencia: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2021)
Resumen: Traffic congestion is a problem in most large cities world wide. It occurs when the capacity of road is surpassed, resulting in augmented vehicular queuing and slower average speeds. The traffic congestion can be caused or increased by various conditions like weather, road work, road traffic incidents. To deal with these problems, we propose a novel cooperative Multi-Agent system (MAS) for Road Traffic Decision Making in Vehicular Ad-Hoc network (VANET) based on a Hierarchical Interval Type-2 Fuzzy Knowledge Representation System (CMRHFS) used for travel route guidance. Our proposal aims to increase the road safety and the quality of the entire road network, especially in case of congestions, accidents and jams, considering traffic information in real-time as well as drivers travel time to attain their destinations. The obtained simulation results have proved our suggested system efficiency compared to Dijkstra's algorithm and Hierarchical Interval Type-2 Fuzzy Logic System (HIT2FLS) regarding two criteria: average travel time and path flow.
URI: http://hdl.handle.net/10553/112025
ISBN: 978-1-6654-4407-1
ISSN: 1098-7584
DOI: 10.1109/FUZZ45933.2021.9494502
Fuente: IEEE International Conference on Fuzzy Systems [ISSN 1098-7584], v. 2021-July, (Julio 2021)
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.