Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/111129
Title: Performance evaluation and boron rejection in a SWRO system under variable operating conditions
Authors: Ruiz García, Alejandro 
De La Nuez Pestana, Ignacio Agustín 
UNESCO Clasification: 3313 Tecnología e ingeniería mecánicas
Keywords: Boron rejection
Desalination
Renewable energy
Reverse osmosis
Variable operation
Issue Date: 2021
Project: Adaptación al Cambio cLImático de los sistemas Energéticos de la MACaronesia 
Journal: Computers and Chemical Engineering 
Abstract: It is well known that reverse osmosis (RO) is the leading desalination technology. As an energy intensive technology, the exploitation of renewable energy sources (RES) to power RO systems is a attractive option. A strategy to take advantage of all the available energy of an off-grid renewable system is to work with the RO system under variable operating conditions. This implies additional challenges in terms of water production and permeate quality, among others. Boron rejection is one of the main concerns in seawater RO (SWRO) systems. The aim of this work was to evaluate the performance and boron rejection of a single-stage SWRO system with 7 membrane elements per pressure vessel under variable operating conditions. The initial permeability coefficients of two SWRO membranes (TM820L-440 and TM820S-400) were calculated from experimental data of a full-scale SWRO desalination plant. These coefficients and the characteristics of the membranes were introduced in a simulation algorithm to estimate the behavior of the SWRO system. The results show that, compared with the TM820S-400 membrane, the TM820L-440 performed better in terms of boron rejection in the form of boric acid, but worse in terms of water production. When RES-powered SWRO systems are designed to work under variable operating conditions, consideration needs to be given to the safe operation window in terms of boron concentration in the permeate and to variation of the permeability coefficient of the membranes.
URI: http://hdl.handle.net/10553/111129
ISSN: 0098-1354
DOI: 10.1016/j.compchemeng.2021.107441
Source: Computers and Chemical Engineering [ISSN 0098-1354], v. 153, 107441, (Octubre 2021)
Appears in Collections:Artículos
Adobe PDF (1,41 MB)
Show full item record

SCOPUSTM   
Citations

34
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

33
checked on Nov 17, 2024

Page view(s)

96
checked on Jun 22, 2024

Download(s)

106
checked on Jun 22, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.