Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/111020
Título: Computing the exact number of similarity classes in the longest edge bisection of tetrahedra
Autores/as: Suárez Rivero, José Pablo 
Trujillo Pino, Agustín Rafael 
Moreno, Tania
Clasificación UNESCO: 1204 Geometría
Palabras clave: Algorithm
Bisection
Longest Edge
Meshes
Similarity Classes, et al.
Fecha de publicación: 2021
Publicación seriada: Mathematics 
Resumen: Showing whether the longest-edge (LE) bisection of tetrahedra meshes degenerates the stability condition or not is still an open problem. Some reasons, in part, are due to the cost for achieving the computation of similarity classes of millions of tetrahedra. We prove the existence of tetrahedra where the LE bisection introduces, at most, 37 similarity classes. This family of new tetrahedra was roughly pointed out by Adler in 1983. However, as far as we know, there has been no evidence confirming its existence. We also introduce a new data structure and algorithm for computing the number of similarity tetrahedral classes based on integer arithmetic, storing only the square of edges. The algorithm lets us perform compact and efficient high-level similarity class computations with a cost that is only dependent on the number of similarity classes.
URI: http://hdl.handle.net/10553/111020
ISSN: 2227-7390
DOI: 10.3390/math9121447
Fuente: Mathematics [EISSN 2227-7390], v. 9 (12), 1447, (Junio 2021)
Colección:Artículos
Unknown (1,41 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.