Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/11065
DC FieldValueLanguage
dc.contributor.advisorViera Rodríguez, María Ascensión-
dc.contributor.advisorGómez Cabrera, María Milagrosa-
dc.contributor.advisorPackard, Theodore Train-
dc.contributor.authorAsensio Elvira, María Teresa-
dc.date.accessioned2013-12-04T03:30:55Z
dc.date.accessioned2018-05-15T10:47:34Z-
dc.date.available2013-12-04T03:30:55Z
dc.date.available2018-05-15T10:47:34Z-
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/10553/11065
dc.description.abstractRespiration is an indicator of metabolism in individual organisms and in ecological populations, and along with other data can provide carbon flow rates through food webs. Here, we studied the metabolism of the green algae, Ulva rotundata Blidingand Ulvarigida C.Agardhthatinhabit intertidal pools along the coast of Gran Canaria. To do this we explored the use of the respiratory electron transport system (ETS) in a pilot study of the variability of potential respiration in Ulva and its relationship with chlorophyll and with dry mass. We studied both field and culture samples. In the initial part of our exploration we learned that homogenization with a Potter-Elvehjen tissue grinder yielded much more enzyme activity per sample than grinding in liquid nitrogen with a mortar and pestle. Furthermore, we learned that NADPH dehydrogenase, not NADH dehydrogenase, was the dominant contributor to the overall ETS activity. The contribution of succinate dehydrogenase activity is negligible. ETS activity as a metabolic proxy has been successfully applied to study many different organisms in the ocean including bacteria, phytoplankton and zooplankton, but it has not been used to study marine macroalgae. These neritic and littoral macrophytes have major ecological and industrial importance, yet little is known about their respiratory physiology. Such knowledge would strengthen our understanding of the resources of the coastal ocean and facilitate its development and best use. In this first phaseof our research we have learned that potential respiration (φ) in Ulva ranges from 0.56μmol O2min-1(g dry mass)-1to 1.24 μmol-1O2min-1(g dry mass)-1.We havelearned that the relationship between changes in potential respiration and dry mass in Ulva follows the equation:φ=0,36*DM +0,013, r2= 0,8363(n = 29);changes in potential respiration and chlorophyllain Ulvaspp. follows the equation: φ= 1,19*Chla -1,8, r2= 0,8556(n =29); changes in potential respiration and chlorophyllbin Ulvaspp. follows the equation: φ= 0,70*Chlb -1,93, r2= 0,8643(n =29). Finally, in a pilot time-course experiment to determine the impact of nutrient-limitation on the metabolic capacity in Ulva, we learned that Ulvadoes not have sufficient reserves to maintain its potential respiration for a week. It would lose between 25 to 60% of its initial potential respiration over this time period. In this first phase of our research we have developed the methodology for the homogenization of Ulva spp., and used a standard spectrophotometric based kinetic enzyme assay to describe the impact of nutrient limitation on the metabolic capacity in Ulva spp. samples collected in the wild and maintained in controlled cultures during a week, being not enough to bring the algae to total starvation conditions.en_US
dc.formatapplication/pdfes
dc.languageengen_US
dc.relationMetabolismo planctónico: Regulación Bioquímica e Impacto Oceanográfico sobre la Bomba Biológicaen_US
dc.rightsby-nc-ndes
dc.subject241719 Fisiología vegetalen_US
dc.subject.otherCanariasen_US
dc.subject.otherMacroalgasen_US
dc.subject.otherETSen_US
dc.subject.otherMetabolismoen_US
dc.titleRespiratory metabolism in the marine macroalga, Ulva spp: exploratory studies with the respiratory electron transport system (ETS)en_US
dc.typeinfo:eu-repo/semantics/masterThesisen_US
dc.typeMasterThesisen_US
dc.bustreaming24736es
dc.compliance.driver1es
dc.contributor.departamentoBiologíaen_US
dc.contributor.facultadFacultad de Ciencias del Maren_US
dc.identifier.absysnet691873es
dc.identifier.crisid-
dc.investigacionCienciasen_US
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses
dc.type2Trabajo final de másteren_US
dc.description.notasMáster en oceanografía ; 2011-2013en_US
dc.utils.revisionen_US
dc.identifier.matriculaTFT-27796es
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-BASen_US
dc.contributor.titulacionMáster Universitario en Oceanografíaes
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.advisor.deptGIR ECOAQUA: Ecofisiología de Organismos Marinos-
crisitem.advisor.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.advisor.deptGIR ECOAQUA: Ecofisiología de Organismos Marinos-
crisitem.advisor.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.advisor.deptDepartamento de Biología-
crisitem.advisor.deptGIR ECOAQUA: Ecofisiología de Organismos Marinos-
crisitem.advisor.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.project.principalinvestigatorGómez Cabrera, María Milagrosa-
Appears in Collections:Trabajo final de máster
Thumbnail
Máster
Adobe PDF (489,5 kB)
Thumbnail
Presentación_ Master_ Asensio-Elvira_2013
Adobe PDF (3,86 MB)
Show simple item record

Page view(s)

68
checked on Jun 1, 2024

Download(s)

77
checked on Jun 1, 2024

Google ScholarTM

Check


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.