Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/110300
DC FieldValueLanguage
dc.contributor.authorKaushik, Manojen_US
dc.contributor.authorBaghel, Neerajen_US
dc.contributor.authorBurget, Radimen_US
dc.contributor.authorTravieso González, Carlos Manuelen_US
dc.contributor.authorDutta, Malay Kishoreen_US
dc.date.accessioned2021-07-08T09:00:03Z-
dc.date.available2021-07-08T09:00:03Z-
dc.date.issued2021en_US
dc.identifier.issn1746-8094en_US
dc.identifier.urihttp://hdl.handle.net/10553/110300-
dc.description.abstractA child has specific language impairment (SLI) or developmental dysphasia (DD) when the speech is delayed or has disordered language development for no apparent reason. As it may be related to loss of hearing, speech abnormality should be diagnosed at an early stage. The existing methods are mainly based on the utterance of vowels and have a high misclassification rate. This article proposes an automatic deep learning model that can be an effective tool to diagnose SLI at the early stage. In the proposed work, raw audio data is processed using Short-time Fourier transform and converted to decibel (dB) scaled spectrograms which are classified using the proposed convolutional neural network (CNN). This approach consists of utterances that contained seven types of vocabulary (vowels, consonant and different syllable Isolated words). A rigorous analysis based on different age-group was performed and a 10-fold Cross-Validation (CV) was done to test the accuracy of the classifier. A comprehensive experimental test reveals that 99.09 % of the children are correctly diagnosed by the proposed framework, which is superior when compared to state-of-the-art methods. The proposed scheme is gender and speaker-independent. The proposed model can be used as a stand-alone diagnostic tool that can assist automatic diagnosis of children for SLI and will be helpful for remote areas where professionals are not available. The proposed model is robust, efficient with low time complexity which is suitable for real-time applications.en_US
dc.languageengen_US
dc.relation.ispartofBiomedical Signal Processing and Controlen_US
dc.sourceBiomedical Signal Processing and Control [ISSN 1746-8094], v. 68, 102798, (Julio 2021)en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherDevelopmental dysphasiaen_US
dc.subject.otherDiagnosisen_US
dc.subject.otherEnvelop modulation spectraen_US
dc.titleSLINet: Dysphasia detection in children using deep neural networken_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typearticleen_US
dc.identifier.doi10.1016/j.bspc.2021.102798en_US
dc.identifier.scopus2-s2.0-85107839032-
dc.contributor.orcid0000-0002-5970-7321-
dc.contributor.orcid0000-0002-0081-6224-
dc.contributor.orcid0000-0003-1849-5390-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid0000-0003-2462-737X-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,211
dc.description.jcr5,076
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds10,7
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Appears in Collections:Artículos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.