Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/107534
DC FieldValueLanguage
dc.contributor.authorSaavedra Santana, Pedroen_US
dc.contributor.authorSantana Del Pino, Ángeloen_US
dc.contributor.authorBello, Luisen_US
dc.contributor.authorPacheco Castelao, José Miguelen_US
dc.contributor.authorSanjuán Velázquez, Estheren_US
dc.date.accessioned2021-06-15T08:59:13Z-
dc.date.available2021-06-15T08:59:13Z-
dc.date.issued2021en_US
dc.identifier.issn1478-7954en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/107534-
dc.description.abstractBackground: The number of deaths attributable to COVID-19 in Spain has been highly controversial since it is problematic to tell apart deaths having COVID as the main cause from those provoked by the aggravation by the viral infection of other underlying health problems. In addition, overburdening of health system led to an increase in mortality due to the scarcity of adequate medical care, at the same time confinement measures could have contributed to the decrease in mortality from certain causes. Our aim is to compare the number of deaths observed in 2020 with the projection for the same period obtained from a sequence of previous years. Thus, this computed mortality excess could be considered as the real impact of the COVID-19 on the mortality rates. Methods: The population was split into four age groups, namely: (< 50; 50–64; 65–74; 75 and over). For each one, a projection of the death numbers for the year 2020, based on the interval 2008–2020, was estimated using a Bayesian spatio-temporal model. In each one, spatial, sex, and year effects were included. In addition, a specific effect of the year 2020 was added ("outbreak"). Finally, the excess deaths in year 2020 were estimated as the count of observed deaths minus those projected. Results: The projected death number for 2020 was 426,970 people, the actual count being 499,104; thus, the total excess of deaths was 72,134. However, this increase was very unequally distributed over the Spanish regions. Conclusion: Bayesian spatio-temporal models have proved to be a useful tool for estimating the impact of COVID-19 on mortality in Spain in 2020, making it possible to assess how the disease has affected different age groups accounting for effects of sex, spatial variation between regions and time trend over the last few years.en_US
dc.languageengen_US
dc.relation.ispartofPopulation Health Metricsen_US
dc.sourcePopulation Health Metrics [EISSN 1478-7954], v. 19 (1), 27, (Diciembre 2021)en_US
dc.subject320505 Enfermedades infecciosasen_US
dc.subject240401 Bioestadísticaen_US
dc.subject.otherCovid-19en_US
dc.subject.otherExcess Of Deathsen_US
dc.subject.otherIntegrated Nested Laplace Approximationen_US
dc.subject.otherSpatio-Temporal Modelsen_US
dc.subject.otherStandardized Mortality Ratiosen_US
dc.titleA Bayesian spatio-temporal analysis of mortality rates in Spain: application to the COVID-19 2020 outbreaken_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1186/s12963-021-00259-yen_US
dc.identifier.scopus85107046244-
dc.contributor.orcid0000-0003-1681-7165-
dc.contributor.orcid0000-0002-6513-4814-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0003-4027-8608-
dc.contributor.orcid0000-0002-4789-8124-
dc.contributor.authorscopusid57224119130-
dc.contributor.authorscopusid57224116263-
dc.contributor.authorscopusid36926130000-
dc.contributor.authorscopusid24741104100-
dc.contributor.authorscopusid6603550348-
dc.identifier.eissn1478-7954-
dc.identifier.issue1-
dc.relation.volume19en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateDiciembre 2021en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-VETen_US
dc.description.sjr0,858
dc.description.jcr2,936
dc.description.sjrqQ1
dc.description.jcrqQ3
dc.description.ssciSSCI
dc.description.miaricds10,8
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Estadística-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR Estadística-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR OHAPA (Higiene y Protección Alimentaria) Grupo de Investigación-
crisitem.author.deptDepartamento de Patología Animal, Producción Animal, Bromatología y Tecnología de Los Alimentos-
crisitem.author.orcid0000-0003-1681-7165-
crisitem.author.orcid0000-0002-6513-4814-
crisitem.author.orcid0000-0003-4027-8608-
crisitem.author.orcid0000-0002-4789-8124-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Patología Animal, Producción Animal, Bromatología y Tecnología de Los Alimentos-
crisitem.author.fullNameSaavedra Santana, Pedro-
crisitem.author.fullNameSantana Del Pino, Ángelo-
crisitem.author.fullNamePacheco Castelao, José Miguel-
crisitem.author.fullNameSanjuán Velázquez, Esther-
Appears in Collections:Artículos
Thumbnail
PDF
Adobe PDF (1,49 MB)
Show simple item record

SCOPUSTM   
Citations

9
checked on Nov 24, 2024

WEB OF SCIENCETM
Citations

10
checked on Nov 24, 2024

Page view(s)

121
checked on Aug 3, 2024

Download(s)

152
checked on Aug 3, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.