Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/107223
Título: From data to actions in intelligent transportation systems: a prescription of functional requirements for model actionability
Autores/as: Laña, Ibai
Sánchez Medina, Javier Jesús 
Vlahogianni, Eleni I.
Del Ser, Javier
Clasificación UNESCO: 3327 Tecnología de los sistemas de transporte
120903 Análisis de datos
Palabras clave: Intelligent transportation systems
Functional requirements
Machine learning
Model actionability
Model evaluation
Fecha de publicación: 2021
Publicación seriada: Sensors (Switzerland) 
Resumen: Advances in Data Science permeate every field of Transportation Science and Engineering, resulting in developments in the transportation sector that are data-driven. Nowadays, Intelligent Transportation Systems (ITS) could be arguably approached as a “story” intensively producing and consuming large amounts of data. A diversity of sensing devices densely spread over the infrastructure, vehicles or the travelers’ personal devices act as sources of data flows that are eventually fed into software running on automatic devices, actuators or control systems producing, in turn, complex information flows among users, traffic managers, data analysts, traffic modeling scientists, etc. These information flows provide enormous opportunities to improve model development and decision-making. This work aims to describe how data, coming from diverse ITS sources, can be used to learn and adapt data-driven models for efficiently operating ITS assets, systems and processes; in other words, for data-based models to fully become actionable. Grounded in this described data modeling pipeline for ITS, we define the characteristics, engineering requisites and challenges intrinsic to its three compounding stages, namely, data fusion, adaptive learning and model evaluation. We deliberately generalize model learning to be adaptive, since, in the core of our paper is the firm conviction that most learners will have to adapt to the ever-changing phenomenon scenario underlying the majority of ITS applications. Finally, we provide a prospect of current research lines within Data Science that can bring notable advances to data-based ITS modeling, which will eventually bridge the gap towards the practicality and actionability of such models.
URI: http://hdl.handle.net/10553/107223
ISSN: 1424-8220
DOI: 10.3390/s21041121
Fuente: Sensors (Switzerland) [ISSN 1424-8220], v. 21(4), 1121, (Febrero 2021)
Colección:Artículos
miniatura
Adobe PDF (458,93 kB)
Vista completa

Citas de WEB OF SCIENCETM
Citations

28
actualizado el 08-dic-2024

Visitas

174
actualizado el 02-mar-2024

Descargas

65
actualizado el 02-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.