Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/106645
DC FieldValueLanguage
dc.contributor.authorRodríguez, R.A.en_US
dc.contributor.authorHerrera, A.M.en_US
dc.contributor.authorRiera, Rodrigoen_US
dc.contributor.authorDelgado, J.D.en_US
dc.contributor.authorQuirós, T.en_US
dc.contributor.authorPerdomo, M.E.en_US
dc.contributor.authorSantander, J.en_US
dc.contributor.authorMiranda, J.V.en_US
dc.contributor.authorFernández-Rodríguez, M.J.en_US
dc.contributor.authorJiménez-Rodríguez, A.en_US
dc.contributor.authorFernández-Palacios, J.M.en_US
dc.contributor.authorOtto, R.en_US
dc.contributor.authorEscudero, C.G.en_US
dc.contributor.authorNavarro-Cerrillo, R.M.en_US
dc.date.accessioned2021-04-08T14:01:06Z-
dc.date.available2021-04-08T14:01:06Z-
dc.date.issued2015en_US
dc.identifier.issn0304-3800en_US
dc.identifier.urihttp://hdl.handle.net/10553/106645-
dc.description.abstractConventional thermodynamics and statistical mechanics deal with the study of physical systems under equilibrium conditions (EC). Internal EC at a temperature that differs from the environment temperature are sustained, in general, by some type of artificial boundaries imposed with research aims or with quotidian utility goals in many kind of domestic appliances; the typical example of academic lab is a closed system immersed in a thermal bath which keeps the temperature constant. However, the ecosystem is a far-from-EC open system. Therefore, conventional thermodynamics and statistical mechanics tend to be orthodoxly regarded as limited to explain the ecosystem functioning since, at the first glance; there seem to be several essential functional differences between it and the previously-mentioned kind of physical systems. This viewpoint averse to conventional physics is paradoxical in regard to the current ecological paradigm given the fully thermodynamic foundation of ecosystem ecology. However, additional evidence in favor of the usefulness of conventional physics to describe the ecosystem functioning have recently been published, pointing out to the possibility that the analytical approach to ecology based on our undergraduate knowledge of physics, unfortunately, could have been hastily neglected before producing its most valuable results. This paper, fully based on the above-mentioned evidence, performs an unavoidable additional step in order to complete such a proposal by showing that the Boltzmann distribution of molecular energy values can be simply and successfully adapted to model the distribution of values of a proxy for trophic energy across an increasing gradient of energy levels, in a very similar fashion to that of a standard trophic pyramid. Starting from this result and by using a balanced combination between plausible theoretical considerations and abundant empirical data, we analyze why this approach is in agreement with well-known ecological principles, at the same time that we explore the general empirical advantages and aftermaths derived from this suggestion. Finally, the article explores the usefulness of the thermo-statistical modeling of eco-kinetic energy per plot to understand those essential physical factors that: promote biological evolution, facilitate species coexistence, can explain the holes in the fossil record, and enhance our current viewpoint about the ecological meaning of entropy. In summary, this article provides simply understandable additional information that indicates, despite its far-from-EC nature, any natural ecosystem is not far away from the most orthodox principles of conventional physics.en_US
dc.languageengen_US
dc.relation.ispartofEcological Modellingen_US
dc.sourceEcological Modelling [ISSN 0304-3800], v. 296, p. 24-35en_US
dc.subject24 Ciencias de la vidaen_US
dc.subject.otherEcosystem ecologyen_US
dc.subject.otherEcological state equationen_US
dc.subject.otherEcological pyramiden_US
dc.subject.otherFood chainen_US
dc.titleThermostatistical distribution of a trophic energy proxy with analytical consequences for evolutionary ecology, species coexistence and the maximum entropy formalismen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ecolmodel.2014.10.017en_US
dc.identifier.scopus2-s2.0-84908662484-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.description.lastpage35en_US
dc.description.firstpage24en_US
dc.relation.volume296en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.identifier.external47301258-
dc.description.numberofpages12en_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2015en_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr1,087
dc.description.jcr2,275
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR ECOAQUA: Biodiversidad y Conservación-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.deptDepartamento de Biología-
crisitem.author.orcid0000-0003-1264-1625-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.fullNameRiera Elena, Rodrigo-
Appears in Collections:Artículos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.