Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/106426
Campo DC Valoridioma
dc.contributor.authorRodríguez, R.A.en_US
dc.contributor.authorHerrera, A.M.en_US
dc.contributor.authorRiera, Rodrigoen_US
dc.contributor.authorSantander, J.en_US
dc.contributor.authorMiranda, J.V.en_US
dc.contributor.authorQuirós, A.en_US
dc.contributor.authorFernández-Rodríguez, M.J.en_US
dc.contributor.authorFernández-Palacios, J.M.en_US
dc.contributor.authorOtto, R.en_US
dc.contributor.authorEscudero, C.G.en_US
dc.contributor.authorJiménez-Rodríguez, A.en_US
dc.contributor.authorNavarro-Cerrillo, R.M.en_US
dc.contributor.authorPerdomo, M.E.en_US
dc.contributor.authorDelgado, J.D.en_US
dc.date.accessioned2021-04-05T13:58:47Z-
dc.date.available2021-04-05T13:58:47Z-
dc.date.issued2015en_US
dc.identifier.issn0304-3800en_US
dc.identifier.urihttp://hdl.handle.net/10553/106426-
dc.description.abstractDespite the well-known thermodynamic traits of ecosystem functioning, their description by means of conventional physics should be regarded as incomplete, even if we take into account the most recent advancements in this field. The analytical difficulties in this field have been especially complex to get a reliable modeling of species diversity per plot (Hp) by endowing this indicator with a fully clear theoretical meaning. This article contributes to resolve such difficulties starting from (a) the previous proposal of an ecological state equation, and (b) the preceding empirical finding of an ecological equivalent of Planck's constant at the evolutionary scale. So, in the first instance, this article proposes an equation for density distributions of Hp values (EDH) based on a simple transformation of the Maxwell–Boltzmann distribution for molecular velocity values (M–BDv). Our results indicate that the above-mentioned equation allows an appropriate fit between expected and observed distributions. Besides, the transformation from M–BDv to EDH establishes connections between species diversity and other indicators that are consistent with well-known ecological principles. This article, in the second instance, uses EDHs from a wide spectrum of surveys as an analytical framework to explore the nature and meaning of stationary trophic information waves (STIWs) whose stationary nature depends on the biomass-dispersal trade-off in function of Hp values (B-DTO-H) that characterizes the most of the explored surveys. B-DTO-H makes these surveys behave as ecological cavity resonators (ECR) by trapping functional oscillations that bounce back and forth between the two opposite edges of the ECR: from r-strategy (at low biomass and diversity, and high dispersal) to K-strategy, and vice versa. STIWs were obtained by using the spline-adjusted values from the arithmetical difference between standardized values of species richness (S) and evenness (J′) in function of Hp values (i.e., a 2D scalar space Hp, S–J′). Twice the distance on the abscissas (2ΔHp) between successive extreme values on the ordinates (whatever a maximum or a minimum) along the above-mentioned spline adjustment was taken as the value of ecological wavelength (λe). λe was assessed in order to obtain the value of the ecological equivalent of Planck's constant (heec) at the intra-survey scale that was calculated as: heec = λe × me × Ie; where me: individual biomass, and Ie: an ad-hoc indicator of dispersal activity. Our main result is that the observed value of heec's mantissa is statistically equivalent to the mantissa of the physical Planck's constant (h = 6.62606957E − 34 J s) in all of the discontinuous (i.e., with interspersed categories in which n = 0) statistical density distributions of Hp values per survey. This means that heec = 6.62606957Eφ Je nat/individual, where φ = −xi, …, −3, −2, −1, 0,+1, +2, +3, …,+xi depending on the type of taxocenosis explored. That is to say, heec indicates the minimum amount of energy exchange allowed between two individuals. The exploration of the analytical meaning of this result in the final sections of the article explains why quantum mechanics (QM) is a useful tool in order to explain several key questions in evolutionary biology and ecology, as for example: the physical limit of adaptive radiation; the balance between competitive exclusion and functional redundancy to promote species coexistence by avoiding the negative effects of competitive exclusion; the apparent holes in the fossil record; the progression of body size along a wide spectrum of taxa as a general evolutionary trend; the non-continuous nature of net energy flow at the ecosystem level; the way in which the energy level is stabilized under stationary ecological conditions; the reasons of the higher sensitivity of high diversity ecosystems under environmental impact despite their higher stability under natural conditions; the tangible expression of complex concept as ecological inertia and elasticity; as well as the increased risk from pushing the biosphere until a rupture limit because of the potential discrete behavior of ecological resilience in the large scale due to the quantum nature of ecosystem functioning.en_US
dc.languageengen_US
dc.relation.ispartofEcological Modellingen_US
dc.sourceEcological Modelling [ISSN 0304-3800], v. 313, p. 162-180en_US
dc.subject24 Ciencias de la vidaen_US
dc.subject2404 Biomatemáticasen_US
dc.subject.otherBiodiversityen_US
dc.subject.otherEcological state equationen_US
dc.subject.otherEcosystem ecologyen_US
dc.subject.otherMaxwell–Boltzmann velocity distributionen_US
dc.subject.otherQuantum mechanicsen_US
dc.subject.otherStatistical mechanicsen_US
dc.titleDistribution of species diversity values: A link between classical and quantum mechanics in ecologyen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ecolmodel.2015.06.021en_US
dc.identifier.scopus2-s2.0-84936887162-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.description.lastpage180en_US
dc.description.firstpage162en_US
dc.relation.volume313en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.identifier.external47301282-
dc.description.numberofpages19en_US
dc.utils.revisionen_US
dc.date.coverdateOctubre 2015en_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr1,087
dc.description.jcr2,275
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR ECOAQUA: Biodiversidad y Conservación-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.deptDepartamento de Biología-
crisitem.author.orcid0000-0003-1264-1625-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.fullNameRiera Elena, Rodrigo-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

15
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

15
actualizado el 17-nov-2024

Visitas

63
actualizado el 10-jun-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.