Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/106396
Campo DC Valoridioma
dc.contributor.authorRodríguez, R.A.en_US
dc.contributor.authorDuncan, J.M.en_US
dc.contributor.authorDelgado, J.D.en_US
dc.contributor.authorVanni, M.J.en_US
dc.contributor.authorRiera, Rodrigoen_US
dc.contributor.authorGonzález, M.J.en_US
dc.date.accessioned2021-04-05T11:25:29Z-
dc.date.available2021-04-05T11:25:29Z-
dc.date.issued2018en_US
dc.identifier.issn0304-3800en_US
dc.identifier.urihttp://hdl.handle.net/10553/106396-
dc.description.abstractConventional ecology lacks a non-contingent theory on the relationship between abiotic, biotic and anthropogenic factors under natural or quasi-natural conditions. As a result, since ecology is the science that studies the interaction between ecological factors in nested complex systems, we should recognize that ecology needs significant enhancements to understand the functioning of ecosystems. This article combines the ecological state equation (ESE, one of the earliest models derived from the Organic Biophysics of Ecosystem –OBEC), with abundant field data of abiotic factors, biotic factors and human factors from inland water rotifers and crustaceans (1022 samples taken over 21 years), litter invertebrates in laurel forest and pine forest (308 samples), and marine interstitial meiofauna of sandy beaches (90 samples). This has been done in order to obtain additional empirical evidence on the intrinsic trend to stationarity in the long run, even in perturbed ecosystems (man-made eutrophic water reservoirs, forest vegetation affected by traffic, and coastal ecosystems close to disposal points of sewage that are fully or partially treated, respectively to the above-mentioned taxocenes), and the relationship between the above-mentioned ecological factors. Our results indicate that there is a complex natural arrangement that intertwines the trend to stationarity and the resilience capability of ecosystems with a clear pattern of hierarchical setup between ecological factors. This is reflected by the role of ESE as a trophodynamic interface in hierarchical statistical models (cluster analysis) because they involve, in the following order of increasing rank: lower level abiotic factors (a.f.), biotic factors (b.f.), the holistic combination of state variables included in the ESE and, finally, higher level human factors (h.f.). In such a way, there is a clear trend to a hierarchical assemblage in agreement with the evolutionary origin of ecological factors in the deep time, as well as in regard to the net direction (⟵) of ecological homeostasis: a.f. ⟵ b.f. ⟵ h.f. In this setup, the ESE accomplishes a key liaison role, because it reflects a long run trend to stationarity which allows an essential degree of ecological stability, as well as our capability to classify ecosystems, in spite of the random influence of ecological perturbations in the short run. The above-mentioned set of additional evidence can be regarded as a step to develop a non-contingent theory about the relationship between abiotic, biotic and anthropogenic factors. Furthermore, since the OBEC, in its origin, deals with only the dynamics of biotic variables, this is the first time that the interaction between one of its main models and other kind of ecological factors is studied yielding reliable results in the process.en_US
dc.languageengen_US
dc.relation.ispartofEcological Modellingen_US
dc.sourceEcological modelling [ISSN 0304-3800], v. 383, p. 23-30en_US
dc.subject240119 Zoología marinaen_US
dc.subject.otherEco-kinetic energyen_US
dc.subject.otherEcological state equationen_US
dc.subject.otherEcosystem dynamicsen_US
dc.subject.otherInterdisciplinary modelsen_US
dc.subject.otherHolistic ecological indicatorsen_US
dc.subject.otherHierarchical ecological setupen_US
dc.titleAdditional empirical evidence on the intrinsic trend to stationarity in the long run and the nested relationship between abiotic, biotic and anthropogenic factors starting from the organic biophysics of ecosystems (OBEC)en_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ecolmodel.2018.05.014en_US
dc.identifier.scopus2-s2.0-85047267056-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.description.lastpage30en_US
dc.description.firstpage23en_US
dc.relation.volume383en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.identifier.external47301273-
dc.description.numberofpages8en_US
dc.utils.revisionen_US
dc.date.coverdateSeptiembre 2018en_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr1,04
dc.description.jcr2,634
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR ECOAQUA: Biodiversidad y Conservación-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.deptDepartamento de Biología-
crisitem.author.orcid0000-0003-1264-1625-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.fullNameRiera Elena, Rodrigo-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 17-nov-2024

Visitas

95
actualizado el 04-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.