Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/106381
Title: Storage and recycling of major and trace element in mangroves
Authors: Ray, R.
Mandal, S. K.
González, A. G. 
Pokrovsky, O. S.
Jana, T. K.
UNESCO Clasification: 251002 Oceanografía química
Keywords: Mangrove
Micronutrient
Plant
Root
Sediment, et al
Issue Date: 2021
Journal: Science of the Total Environment 
Abstract: The role of mangroves in sequestering metal and nutrients in sediment has been described in the past, but knowledge gaps still exist on storage capacity and recycling fluxes of elements in plant biomass, notably concerning their magnitude in root uptake and loss by litterfall. This study addresses the storage and transport pathways of 16 elements, classified as macro-nutrients (Ca, Mg, Na, K), micro-nutrients (Fe, Mn, Ni, Co, Cu, Cr, Zn, Mo), and potential toxicants (Al, Cd, Sn, Pb) in the world's largest mangroves, the Sundarbans. Elemental concentrations in plant organs were generally lower than in the sediment. The stock of macro and micro-nutrients in plant biomass varied from 60 to 2717 and 0.003 to 37.7 Mg ha−1 respectively, with highest values observed for Na and lowest for Cd. The Avicennia species exhibited the maximal accumulation of all elements. Translocation of major elements to different plant organs increased with increasing their concentrations in the sediment. Elemental loss via litterfall indicated that Sundarbans mangrove could act as a source, particularly of Mn, to the Bay of Bengal. Moreover, belowground uptake of the 16 elements showed 2–3 fold higher fluxes than their loss via litterfall. There was a significant retention of some trace elements (notably Mo, Cd, and Sn) in plant biomass, which might allow one to use these mangroves for phytoremediation and restoration purposes. We conclude that mangroves efficiently store and remobilize major and trace elements from the sediments by root uptake and recycle back to sediment surface via litterfall.
URI: http://hdl.handle.net/10553/106381
ISSN: 0048-9697
DOI: 10.1016/j.scitotenv.2021.146379
Source: Science of the Total Environment [ISSN 0048-9697], v. 780, 146379, (Agosto 2021)
Appears in Collections:Artículos
Show full item record

SCOPUSTM   
Citations

22
checked on Mar 17, 2024

WEB OF SCIENCETM
Citations

17
checked on Feb 25, 2024

Page view(s)

71
checked on Dec 16, 2023

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.