Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/106242
Campo DC Valoridioma
dc.contributor.authorPinilla Domínguez, Jaimeen_US
dc.contributor.authorNegrín Hernández, Miguel Ángelen_US
dc.date.accessioned2021-03-25T12:20:02Z-
dc.date.available2021-03-25T12:20:02Z-
dc.date.issued2021en_US
dc.identifier.issn2227-7390en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/106242-
dc.description.abstractThe interrupted time series analysis is a quasi-experimental design used to evaluate the effectiveness of an intervention. Segmented linear regression models have been the most used models to carry out this analysis. However, they assume a linear trend that may not be appropriate in many situations. In this paper, we show how generalized additive models (GAMs), a non-parametric regression-based method, can be useful to accommodate nonlinear trends. An analysis with simulated data is carried out to assess the performance of both models. Data were simulated from linear and non-linear (quadratic and cubic) functions. The results of this analysis show how GAMs improve on segmented linear regression models when the trend is non-linear, but they also show a good performance when the trend is linear. A real-life application where the impact of the 2012 Spanish cost-sharing reforms on pharmaceutical prescription is also analyzed. Seasonality and an indicator variable for the stockpiling effect are included as explanatory variables. The segmented linear regression model shows good fit of the data. However, the GAM concludes that the hypothesis of linear trend is rejected. The estimated level shift is similar for both models but the cumulative absolute effect on the number of prescriptions is lower in GAM.en_US
dc.languageengen_US
dc.relation.ispartofMathematicsen_US
dc.sourceMathematics [EISSN 2227-7390], v. 9 (4), 299, (Febrero 2021)en_US
dc.subject530202 Modelos econométricosen_US
dc.subject5904 Instituciones políticasen_US
dc.subject.otherGeneralized Additive Modelsen_US
dc.subject.otherInterrupted Time Series Analysisen_US
dc.subject.otherPharmaceutical Prescriptionsen_US
dc.subject.otherSimulation Analysisen_US
dc.subject.otherSpainen_US
dc.titleNon-parametric generalized additive models as a tool for evaluating policy interventionsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/math9040299en_US
dc.identifier.scopus85101028129-
dc.contributor.authorscopusid7005595836-
dc.contributor.authorscopusid57222014907-
dc.identifier.eissn2227-7390-
dc.description.lastpage12en_US
dc.identifier.issue4-
dc.description.firstpage1en_US
dc.relation.volume9en_US
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Artículoen_US
dc.description.notasThis article belongs to the Special Issue Quantitative Methods in Health Care Decisionsen_US
dc.utils.revisionen_US
dc.date.coverdateFebrero 2021en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-ECOen_US
dc.description.sjr0,495
dc.description.jcr2,592
dc.description.sjrqQ2
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,4
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Economía de la salud y políticas públicas-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.orcid0000-0002-7126-4236-
crisitem.author.orcid0000-0002-7074-6268-
crisitem.author.parentorgDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.fullNamePinilla Domínguez, Jaime-
crisitem.author.fullNameNegrín Hernández, Miguel Ángel-
Colección:Artículos
miniatura
Adobe PDF (1,5 MB)
Vista resumida

Citas SCOPUSTM   

4
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

4
actualizado el 24-nov-2024

Visitas

150
actualizado el 05-may-2024

Descargas

217
actualizado el 05-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.