Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/105822
Título: TGC20ReId: a dataset for sport event re-identification in the wild
Autores/as: Peñate Sánchez, Adrián 
Freire Obregón, David Sebastián 
Lorenzo-Melián, Adrián
Lorenzo Navarro, José Javier 
Castrillón Santana, Modesto Fernando 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Sport
Re-identification
Dataset
Fecha de publicación: 2020
Proyectos: Identificación Automática de Oradores en Sesiones Parlamentarias Usando Características Audiovisuales. 
Publicación seriada: Pattern Recognition Letters 
Resumen: Person re-identification (Re-ID) is the task of retrieving a person of interest taken from different cameras or from the same camera in different occasions. To address this challenging task, a large amount of labelled data is required both for testing and for learning. Such high quality annotated data is still rare for many Re-ID applications. In this paper, we introduce a novel dataset to evaluate Re-ID methods in complex real-world scenarios. In this case, we will be using a sporting event as the scenario. For this aim, participants in a 128 km night and day course were captured in five different recording points along the track and later manually identified and annotated. The dataset is evaluated using state-of-the-art techniques and wide array of experimental setups are considered, such as: day vs. night, motion blur, changes in clothing, etc. The evaluation suggests that the features present in the proposed dataset (time difference, unrestricted weather and illumination capture conditions, and the possibility of clothes changes between probe and gallery) pose a challenging scenario for future development in the Re-ID problem.
URI: http://hdl.handle.net/10553/105822
ISSN: 0167-8655
DOI: 10.1016/j.patrec.2020.08.003
Fuente: Pattern Recognition Letters [0167-8655], v. 138 (october), p. 355-361
Colección:Artículos
Vista completa

Citas SCOPUSTM   

18
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

13
actualizado el 24-nov-2024

Visitas

144
actualizado el 25-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.