Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/135683
Título: | ANN Model presented in "Surrogate model based on ANN for the evaluation of the fundamental frequency of offshore wind turbines supported on jackets" | Autores/as: | Quevedo Reina, Román Álamo Meneses, Guillermo Manuel Padrón Hernández, Luis Alberto Aznárez, Juan José |
Clasificación UNESCO: | 332202 Generación de energía 330510 Cimientos |
Fecha de publicación: | 2025 | Resumen: | The model is stored in the file "model.mat" and can be used by the included "class_model" class. Model Contents The "model.mat" file contains a Matlab variable named "model", which has the following properties: dlnet: A collection of 20 artificial neural networks (ANNs) generated in the study. name_input: Names of the input variables for the model (described in the scientific article). name_output: Name of the output variable of the model (fundamental frequency). mean_input: Mean values of each input variable, obtained from the training dataset. Used for normalization. std_input: Standard deviation of each input variable, obtained from the training dataset. Used for normalization. mean_output: Mean value of the output variable, obtained from the training dataset. Used for normalization. std_output: Standard deviation of the output variable, obtained from the training dataset. Used for normalization. How to Use the Model Prerequisites To use the model, you must have the Deep Learning Toolbox installed in Matlab. Evaluation Method The model can be evaluated using the "eval" method included in the "class_model". This method provides the following options: output: Specifies how the individual ANN predictions should be aggregated. The options are: "mean": Returns the mean of the predictions from the individual ANNs. (Default) "std": Returns the standard deviation of the predictions from the individual ANNs. "both": Returns both the mean and the standard deviation of the predictions from the individual ANNs, using the third dimension of the output matrix. "all": Returns the predictions from all individual ANNs, using the third dimension of the output matrix. IDnet: Specifies which ANNs to use for the evaluation. The options are: "all": Uses all ANNs embedded in the model. (Default) any number: Uses only the ANN at the specified position. any vector: Uses only the ANNs at the positions specified in the vector. Input Data Format Prepare your input as a matrix where: Each row represents a sample. The matrix must have 22 columns, corresponding to the 22 input variables, arranged in the same order as specified in name_input. Example Below is an example of how to load the model and use the eval method: % Load the model load('model.mat'); % Prepare your input data (using case example) load("case_example.mat"); % Load case example inputData=example{:,:}; % Extract matrix of data % Evaluate the model (default) output = model.eval(inputData); % Evaluate the model (specific options) output = model.eval(inputData,'output','both','IDnet',1:10); | URI: | http://hdl.handle.net/10553/135683 | DOI: | 10.5281/zenodo.14731582 |
Colección: | Datasets ULPGC |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.