Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/77427
Title: Detección de tumores cerebrales usando imágenes hiper-espectrales mediante algoritmos semi-supervisados combinando spectral unmixing y clasificación supervisada
Authors: Tejedor Hernández, Miguel Ángel
Director: Marrero Callicó, Gustavo Iván 
UNESCO Clasification: 3325 Tecnología de las telecomunicaciones
Issue Date: 2016
Project: Hyperspectral Imaging Cancer Detection (Helicoid) (Contrato Nº 618080) 
Abstract: The detection of human brain cancer tissues by the naked eye during neurosurgical operations is one of the current challenges for neurosurgeons in a tumour resection surgery. Hyperspectral imaging provides a large amount of information about the characteristics of the materials captured due to its high spectral resolution. This paper proposes a strategy based on this type of data for brain cancer detection using semi-supervised classification in order to improve the classification results offered by supervised approach. The main goal is to find the best alternative to detect brain tumour samples taken into account the accuracy obtained. For that end, the semi-supervised algorithm proposed combines spectral unmixing techniques with supervised classification. Quantitative and qualitative experimental results have been conducted to analyse the classification results in semi-supervised fashion.
Department: Departamento de Ingeniería Electrónica Y Automática
Faculty: Escuela de Ingeniería de Telecomunicación y Electrónica
Institute: IU de Microelectrónica Aplicada
Degree: Máster Universitario en Tecnologías de Telecomunicación
URI: http://hdl.handle.net/10553/77427
Appears in Collections:Trabajo final de máster
Thumbnail
Adobe PDF (3,51 MB)
Thumbnail
Adobe PDF (568,36 kB)
Thumbnail
Adobe PDF (201,36 kB)

En el caso de que no encuentre el documento puede ser debido a que el centro o las/os autoras/es no autorizan su publicación. Si tiene verdadero interés en el contenido del mismo, puede dirigirse al director/a o directores/as del trabajo cuyos datos encontrará más arriba.

Show full item record

Google ScholarTM

Check


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.