Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/70974
Campo DC Valoridioma
dc.contributor.authorMoreno Blas, Eliasen_US
dc.contributor.authorVázquez Polo, Francisco Joséen_US
dc.contributor.authorNegrín Hernández, Miguel Ángelen_US
dc.date.accessioned2020-03-18T19:29:46Z-
dc.date.available2020-03-18T19:29:46Z-
dc.date.issued2019en_US
dc.identifier.isbn9781138731738en_US
dc.identifier.urihttp://hdl.handle.net/10553/70974-
dc.description.abstractCost-effectiveness analysis is becoming an increasingly important tool for decision making in the health systems. Cost-Effectiveness of Medical Treatments formulates the cost-effectiveness analysis as a statistical decision problem, identifies the sources of uncertainty of the problem, and gives an overview of the frequentist and Bayesian statistical approaches for decision making. Basic notions on decision theory such as space of decisions, space of nature, utility function of a decision and optimal decisions, are explained in detail using easy to read mathematics. Features Focuses on cost-effectiveness analysis as a statistical decision problem and applies the well-established optimal statistical decision methodology. Discusses utility functions for cost-effectiveness analysis. Enlarges the class of models typically used in cost-effectiveness analysis with the incorporation of linear models to account for covariates of the patients. This permits the formulation of the group (or subgroup) theory. Provides Bayesian procedures to account for model uncertainty in variable selection for linear models and in clustering for models for heterogeneous data. Model uncertainty in cost-effectiveness analysis has not been considered in the literature. Illustrates examples with real data. In order to facilitate the practical implementation of real datasets, provides the codes in Mathematica for the proposed methodology. The motivation for the book is to make the achievements in cost-effectiveness analysis accessible to health providers, who need to make optimal decisions, to the practitioners and to the students of health sciences.en_US
dc.languageengen_US
dc.publisherTaylor & Francis Groupen_US
dc.subject32 Ciencias médicasen_US
dc.subject1209 Estadísticaen_US
dc.titleBayesian Cost-Effectiveness Analysis of Medical Treatmentsen_US
dc.typeinfo:eu-repo/semantics/booken_US
dc.typeBooken_US
dc.identifier.doi10.1201/9781315188850en_US
dc.identifier.absysnet754080-
dc.investigacionCiencias de la Saluden_US
dc.type2Libroen_US
dc.identifier.eisbn9781315188850-
dc.utils.revisionen_US
dc.identifier.ulpgces
dc.description.spiqQ1
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.orcid0000-0002-0632-6138-
crisitem.author.orcid0000-0002-7074-6268-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.fullNameVázquez Polo, Francisco José-
crisitem.author.fullNameNegrín Hernández, Miguel Ángel-
Colección:Libro
Vista resumida

Visitas

167
actualizado el 17-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.