Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/43169
DC FieldValueLanguage
dc.contributor.authorFavalli, M.en_US
dc.contributor.authorKarátson, D.en_US
dc.contributor.authorYepes, J.en_US
dc.contributor.authorNannipieri, L.en_US
dc.contributor.otherYepes, Jorge-
dc.contributor.otherFavalli, Massimiliano-
dc.contributor.otherNannipieri, Luca-
dc.contributor.otherNannipieri, Luca-
dc.date.accessioned2018-11-21T13:07:39Z-
dc.date.available2018-11-21T13:07:39Z-
dc.date.issued2014en_US
dc.identifier.issn0169-555Xen_US
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/43169-
dc.description.abstractIn nature, several types of landforms have simple shapes: as they evolve they tend to take on an ideal, simple geometric form such as a cone, an ellipsoid or a paraboloid. Volcanic landforms are possibly the best examples of this “ideal” geometry, since they develop as regular surface features due to the point-like (circular) or fissure-like (linear) manifestation of volcanic activity. In this paper, we present a geomorphometric method of fitting the “ideal” surface onto the real surface of regular-shaped volcanoes through a number of case studies (Mt. Mayon, Mt. Somma, Mt. Semeru, and Mt. Cameroon). Volcanoes with circular, as well as elliptical, symmetry are addressed. For the best surface fit, we use the minimization library MINUIT which is made freely available by the CERN (European Organization for Nuclear Research). This library enables us to handle all the available surface data (every point of the digital elevation model) in a one-step, half-automated way regardless of the size of the dataset, and to consider simultaneously all the relevant parameters of the selected problem, such as the position of the center of the edifice, apex height, and cone slope, thanks to the highly performing adopted procedure. Fitting the geometric surface, along with calculating the related error, demonstrates the twofold advantage of the method. Firstly, we can determine quantitatively to what extent a given volcanic landform is regular, i.e. how much it follows an expected regular shape. Deviations from the ideal shape due to degradation (e.g. sector collapse and normal erosion) can be used in erosion rate calculations. Secondly, if we have a degraded volcanic landform, whose geometry is not clear, this method of surface fitting reconstructs the original shape with the maximum precision. Obviously, in addition to volcanic landforms, this method is also capable of constraining the shapes of other regular surface features such as aeolian, glacial or periglacial landforms.en_US
dc.languageengen_US
dc.publisher0169-555X
dc.relation.ispartofGeomorphologyen_US
dc.sourceGeomorphology[ISSN 0169-555X],v. 221, p. 139-149en_US
dc.subject250607 Geomorfologíaen_US
dc.subject250621 Vulcanologíaen_US
dc.subject.otherSurface fittingen_US
dc.subject.otherVolcano shapeen_US
dc.subject.otherRegular surfaceen_US
dc.subject.otherDEM-based morphometryen_US
dc.titleSurface fitting in geomorphology - Examples for regular-shaped volcanic landformsen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/j.geomorph.2014.06.009
dc.identifier.scopus84903438528-
dc.identifier.isi000340338000011-
dcterms.isPartOfGeomorphology
dcterms.sourceGeomorphology[ISSN 0169-555X],v. 221, p. 139-149
dc.contributor.authorscopusid8340407400-
dc.contributor.authorscopusid6602341669-
dc.contributor.authorscopusid16314521900-
dc.contributor.authorscopusid35225302600-
dc.description.lastpage149-
dc.description.firstpage139-
dc.relation.volume221-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.identifier.wosWOS:000340338000011-
dc.contributor.daisngid645627-
dc.contributor.daisngid1509808-
dc.contributor.daisngid2313783-
dc.contributor.daisngid3314252-
dc.identifier.investigatorRIDJ-6653-2012-
dc.identifier.investigatorRIDNo ID-
dc.identifier.investigatorRIDNo ID-
dc.identifier.investigatorRIDNo ID-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Favalli, M
dc.contributor.wosstandardWOS:Karatson, D
dc.contributor.wosstandardWOS:Yepes, J
dc.contributor.wosstandardWOS:Nannipieri, L
dc.date.coverdateSeptiembre 2014
dc.identifier.ulpgces
dc.description.sjr1,431
dc.description.jcr2,785
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IOCAG: Geología Aplicada y Regional-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.orcid0000-0001-5039-1482-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameYepes Temiño, Jorge-
Appears in Collections:Articles
Show simple item record
Thumbnail
pdf
Adobe PDF (8,66 MB)

SCOPUSTM   
Citations

12
checked on Mar 30, 2025

WEB OF SCIENCETM
Citations

12
checked on Mar 30, 2025

Page view(s)

86
checked on Feb 17, 2024

Download(s)

254
checked on Feb 17, 2024

Google ScholarTM

Check


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.