Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/142450
Campo DC Valoridioma
dc.contributor.authorSanfilippo, Stefanoen_US
dc.contributor.authorFarina, Lorenzoen_US
dc.contributor.authorDe Vito, Pietroen_US
dc.contributor.authorRepossi, Mattiaen_US
dc.contributor.authorHernández Cabrera, José Juanen_US
dc.contributor.authorÉvora Gómez, Joséen_US
dc.date.accessioned2025-07-11T17:48:40Z-
dc.date.available2025-07-11T17:48:40Z-
dc.date.issued2024en_US
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/142450-
dc.description.abstractThis paper presents a novel approach to modelling Renewable Energy Communities (REC) that integrates agent-based modelling, discrete-event simulation, and system dynamics. The model captures individual Points of Delivery (PoD) in a REC and represents aggregated REC dynamics over time, including energy flows, feedback loops, and long-term trends such as the balance between energy generation and consumption. Additionally, an optimisation model has been formulated to maximise REC performance. The model defines an objective function in order to maximise the Net Present Value (NPV) of investments while considering inflation rates and projected cash flows. As part of this work, a simulation tool has been developed that is both adaptable and scalable. Its adaptability enables parameter adjustments such as geographical location, installed photovoltaic capacity, PoD consumption, and energy prices, while its scalability supports a wide range of REC sizes, from small-scale projects to large, complex systems. The tool also integrates regulatory incentives, such as subsidies or penalties, to ensure realistic and context-sensitive outcomes across diverse regulatory frameworks. This tool has been validated through a real-world case study in Val d’Aosta, Italy. Scenario optimisation under varying energy price conditions demonstrated the tool’s effectiveness achieving substantial economic benefits. Results reveal that higher energy prices drive increased installed power, reduced external energy purchases, and higher self-consumption.en_US
dc.languageengen_US
dc.source15th Conference on DATA ANALYSIS METHODS for Software Systems November 28-30, 2024 Druskininkai, Lithuaniaen_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.titleAn Agent Based Simulation and Optimization Model for Minimizing Costs of Renewable Energy Communitiesen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference15th Conference on DATA ANALYSIS METHODS for Software Systems, 2024en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Póster de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateNovember, 2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.contributor.buulpgcBU-INFen_US
dc.contributor.buulpgcBU-INFen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2427-2441-
crisitem.author.orcid0000-0001-9348-7265-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameSanfilippo, Stefano-
crisitem.author.fullNameHernández Cabrera, José Juan-
crisitem.author.fullNameÉvora Gómez, José-
Colección:Póster de congreso
Vista resumida

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.