Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/122004
Title: Morphological changes and energetic requirement during ontogenetic development of Chelon auratus (Risso, 1810)
Authors: Martínez-Leiva, Lorena
Fatira, Effrosyni
Landeira Sánchez, José M. 
Díaz Pérez, Javier 
Hernández-León, Santiago 
Roo Filgueira, Francisco Javier 
Tuset Andujar, Victor Manuel 
UNESCO Clasification: 310502 Piscicultura
240114-4 Taxonomía animal. Peces
240703 Morfología celular
Keywords: Geometric Morphometric Analysis
Electron Transport System
Grow patterns
Respiration rates
Chelon auratus
Issue Date: 2023
Publisher: Servicio de Publicaciones y Difusión Científica de la Universidad de Las Palmas de Gran Canaria (ULPGC) 
Conference: VIII International Symposium on Marine Sciences (ISMS 2022) 
Abstract: Morphology is a scientific discipline analyzing the shape of organisms (Adams et al., 2004), which has been used in ecology, evolution, palaeontology, and even fisheries and aquaculture. In fishes, variation in body shape is a key factor that can influence multiple traits such as, swimming, foraging, mating, migrations, and predator avoidance (Farré et al., 2016). The present study describes the morphological changes and the growth trajectories during the transformation from 24 to 54 days after hatching (dah) in the golden grey mullet, Chelon auratus (Risso, 1810) using geometric morphometric analysis (GMA). The results showed a decrease of morphological disparity with the somatic growth, which indicated a higher phenotypic variability in the first phase of ontogenetic development. Given that this variability could affect to metabolism, some individuals with different morphologies and with different hatching were selected for estimating their degree of metabolic activity by means of the Electron Transport System (ETS) analysis. Differences were clearly noted depending on age group, younger individuals present higher respiration rate. Moreover, respiration rate was related with body shape individuals in way that organisms with more developed body have high metabolism rate. Therefore, these findings emphasized the relevance of the intra-specific variability for any study on larval development.
URI: http://hdl.handle.net/10553/122004
ISBN: 978-84-9042-477-3
Source: Abstracts Volume VIII International Symposium on Marine Sciences, July 2022 / coordinación, María Esther Torres Padrón, p. 196-197
Appears in Collections:Póster de congreso
Adobe PDF (577,55 kB)
Show full item record

Page view(s)

139
checked on Nov 16, 2024

Download(s)

28
checked on Nov 16, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.