Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/114220
Campo DC Valoridioma
dc.contributor.authorVega Rodríguez, Gisela Del Carmenen_US
dc.contributor.authorPaz Hernández, Rubénen_US
dc.contributor.authorMonzón Verona, Mario Domingoen_US
dc.contributor.authorGledall, Andyen_US
dc.date.accessioned2022-03-28T11:29:06Z-
dc.date.available2022-03-28T11:29:06Z-
dc.date.issued2021en_US
dc.identifier.urihttp://hdl.handle.net/10553/114220-
dc.description.abstractThe material extrusion additive manufacturing (AM) results in porous structures, which are desired in tissue engineering. Most scaffolds are 3D printed, but there are several methodologies to model these printed parts and to estimate their mechanical behaviour by finite element analysis (FEA). In this work, two different approaches are defined and compared in terms of computational efficiency, dimensional accuracy, and mechanical behaviour prediction of printed parts: geometry-based and voxel-based modelling techniques. Both methodologies are applied in a real scaffold, starting from the manufacturing G-code file, and FEA was applied to the resulting models. The results of the compression tests and dimensional measurements were compared with experimental and theoretical data. Moreover, the time and CPU requirements were also studied to determine which methodology is more suitable for each application. In terms of scaffolds manufacturing, the geometry-based modelling methodology is a more efficient process for simple parts, such as rectilinear patterned scaffolds, while the voxel-based one is more advantageous for complex geometries, such as gyroids. The whole process, modelling and simulation, is useful to optimise parts before printing.en_US
dc.languageengen_US
dc.relationBiomaterials and Additive Manufacturing: Osteochondral Scaffold innovation applied to osteoarthritisen_US
dc.subject3312 Tecnología de materialesen_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherTissue engineeringen_US
dc.subject.otherScaffolden_US
dc.subject.otherMaterial extrusion additive manufacturingen_US
dc.subject.other3D geometry modellingen_US
dc.subject.otherFinite element analysisen_US
dc.subject.otherMechanical propertiesen_US
dc.titleModelling methodologies for Finite Element Analysis of material extrusion 3D printed scaffoldsen_US
dc.typeinfo:eu-repo/semantics/lectureen_US
dc.typeLectureen_US
dc.relation.conferenceBrainIT-Brain Revealed: Innovative Technologies in Neurosurgery Studyen_US
dc.investigacionCiencias de la Saluden_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Ponenciaen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.contributor.buulpgcBU-INGen_US
dc.contributor.buulpgcBU-INGen_US
dc.contributor.buulpgcBU-INGen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.project.principalinvestigatorMonzón Verona, Mario Domingo-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptDepartamento de Ingeniería Eléctrica-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.orcid0000-0002-9141-537X-
crisitem.author.orcid0000-0003-1223-7067-
crisitem.author.orcid0000-0003-2736-7905-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameVega Rodríguez, Gisela Del Carmen-
crisitem.author.fullNamePaz Hernández, Rubén-
crisitem.author.fullNameMonzón Verona, Mario Domingo-
Colección:Ponencias
Vista resumida

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.