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a b s t r a c t 

Gait deviations such as asymmetry are one of the characteristic symptoms of motor dysfunctions that 

contribute to the risk of falls. Our objective is to measure gait abnormalities such as asymmetry of the 

lower limbs in order to evaluate the diagnosis more objectively. For the measurement we use inertial 

measurement unit (IMU) sensors and force sensors, which are integrated in wristbands and insoles. To 

extend the battery life of wearable devices, we only save data of the activity gait within the wearables. 

Therefore we perform activity recognition with a smartphone. Using convolutional neural network (CNN) 

we achieved an accuracy of 94.7 % of the activity gait recognition. Before recording we synchronize the 

wearable sensors and reach a maximum latencies of 3 ms . Before the analysis of the symmetry we detect 

the strides by using a CNN with an accuracy of 98.8 %. For the symmetry evaluation we used dynamic 

time warping (DTW). The DTW enables us to calculate symmetry of the complete time series of human 

gait. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

One of the greatest achievements of modern medicine is that

he life expectancy of the global population is continuously in-

reasing [1] . However, it also creates new problems. The epidemi-

logy of old-age diseases is a significant part of the problem. These

nclude, for example, Parkinson’s disease (PD) [2] . PD is often com-

ined with motor dysfunctions. For this reason, it is essential to

ssess the patient’s motor skills at regular intervals. Furthermore,

he measurement of motor skills can be used for conclusions about

he progress of the disease and treatment success. Bradykinesia,

igor, tremor, postural instability, and walking disorders are typi-

al symptoms of the disease. The aim of our cooperation with the

iederlausitz Clinic Senftenberg is to measure gait abnormalities in

D, such as the asymmetry of the upper and lower limbs in daily

ife. Thus, the diagnosis can be more objective and therapy more

ffective. Furthermore, the continuous measurements should give

he patient feedback to the therapy success and thus can be moti-

ated for the therapy. For this reason, we created a mobile system

hat provides objective measurement data to the physician to be

ble to evaluate motor disease quantitatively. Gait deviations such

s asymmetry are one of the characteristic symptoms of patients
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ith PD that contribute to the risk of falls [3] . For the continuous

easurement of motion in daily life, we propose the use of wear-

ble microcontroller-based systems. For this reason, we propose a

ystem that: 

1. uses sensors that the user can comfortably carry the whole day

2. records and transmits data in an energy-saving manner 

3. synchronizes the arm and leg sensors in real-time 

4. filters out the activity gait from any other movement activity 

5. analyses the symmetry of legs individually and to each other 

This work is divided into seven sections. Relevant works for

his paper are introduced in section II. Section III describes the

eveloped hardware, the test performed by the users. All carried

ut procedures we need for the analysis of the A-symmetry are

escribed in Section IV. The results achieved are presented in

ection V. Section VI indicates the discussion and Section VII the

onclusion and further development. 

. Related works 

For the symmetry analysis of the gait in daily life, time series

ust be recorded with the wearable sensors. Therefore it is

ecessary to extract the activity gait from all activities such as

itting, standing, climbing stairs, or walking. To be able to calculate

ymmetry values from this time series, the system must work

ynchronously. 

https://doi.org/10.1016/j.micpro.2020.103118
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2020.103118&domain=pdf
mailto:tobias.steinmetzer101@alu.ulpgc.es
mailto:tobias.steinmetzer@b-tu.de
https://doi.org/10.1016/j.micpro.2020.103118
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2.1. Sensors 

Already in 1992, motion and symmetry of the lower extrem-

ities were recorded with cameras and markers [4] . Technologi-

cal advances and the cost-effective development of depth cameras

have opened up new possibilities for motion analysis by Kinect

from 2010. The depth camera extended the RGB camera. Thus the

gait could be analyzed with new methods [5] . The disadvantage of

camera systems is that they are stationary. 

In the following years, the use of gyroscopes, accelerometers

magnetometers, and force sensors were further developed, and the

popularity of the sensors increased, as the many smartphones and

game console controllers are equipped with these sensors. The ad-

vantage of these sensors is that these are integrated into small de-

vices and that they are wearable. Thus it is possible to analyze the

human gait independent of location. These sensors are often used

to determine strides or activities [6–15] . 

2.2. Activity recognition 

Many smartphones have a gyroscope, accelerometer, and mag-

netometer. In many studies, this has been used to try to identify

the activities of people [13–15] . One possibility to implement this

is to choose a fixed window width and collect all statistical values

for this window, which serve as a characteristic for the classifica-

tion. The use of a neural network has proven to be useful here

[14,15] . Another possibility is the use of CNN’s [13] . 

Activity detection is usually used to reflect the time a person

has been moving throughout the day. This is sufficient for an ac-

tivity estimation of a person in general. The quality of smartphone

sensors is adequate to estimate the activity of a person. 

2.3. Symmetry 

The situation is different when wearables assess diseases

related to movement disorders. In this case, IMU sensors are at-

tached to specific joints or integrated into clothing. To measure and

store the time series of gait wearable containing microcontrollers

in combination with IMU sensors are often used [6–11,16–22] .

In most cases, the motion of the lower extremities is measured

[6–11,22] . Thereby conclusions can be made about the stride

length, cadence, stride duration, gait phases, and symmetry

[6,10,11,23] . 

There are different methods for the calculation of symmetry.

One approach is that different calculated features like step length,

step duration, standing time, or swing time of the legs are put into

relation [16,20,24] . The disadvantage of this method is that only

average values of the calculated characteristics for the gait can be

assessed, but not the entire time series. This is different for sta-

tionary systems, which are camera-based. With these systems, the

complete body can be recorded synchronously [17] . Both types of

symmetry evaluation are useful. However, in our opinion, a direct

comparison of the time series is most useful, because differences

in the related arms and strides can be measured directly. 

The symmetry of arms and legs, as well as the symmetry of

the upper and lower limbs with each other, investigate only a few

papers [25–27] . Changes of interlimb coordination in individuals

with PD and healthy older adults while systematically manipulat-

ing walking speed are compared to determine the impact of PD

symptoms on interlimb coordination [25] . Markers were placed on

the foot, heel, ankle, knee, hip, thigh, wrist, elbow, shoulder, and

head. A point estimate of the relative phase (PERP) between body

segments was calculated by using the moment at which the posi-

tive maxima were reached for the angle of each body segment. To

assess change in asymmetry over time is the objective in [26] . The
hanges in movements are assessed by a single neurologist special-

zing in movement disorders. A robust ordinal logistic regression

odel that includes a control for clustering due to repeated obser-

ations within-person for evaluating the relative change in asym-

etry is used. 

Another system focuses on the study of the impact of PD on

ynkinesias (i.e., the symmetry of movement) during walking, and

he effect of medication on the gait symmetry [27] . Every patient

as tested and measured using IMU-sensors in his ON and OFF

tate. The trend symmetry value is calculated as a ratio of the

ariabilities of two eigenvectors, which are calculated from the

inematic motion data of the left and right limb. An up-to-date

verview of symmetry analysis systems for movements is shown

n [28] . 

The use of identical time points for the determination of

-symmetry is of the highest importance. That means data

ransmission has to be synchronized. 

.4. Synchronization 

The video-based systems have a synchronized recording of

ll extremity movements. The disadvantage is that the measure-

ents cannot be carried out in daily life. Only camera systems

or laboratory measurements were found in the literature [27] .

earable systems, in contrast, could be an alternative for making

ymmetry measurements of gait in daily life, but they are not

ime-synchronized. 

To closing this gap, the microcontrollers must be synchronized

ith each other. Several approaches have already been pursued

his. A possible solution is to build up a sensor network in which

he sensors are connected by wires [27] . Another work presents a

ystem where a docking station serves as a charging station and

or synchronization [18] . The docking station can synchronize four

earable sensors, but it has a time drift after a longer runtime.

thers use the system of MbientLab [20] . To determine the sym-

etry of the gait, we need four synchronized sensors (one at each

imb). In earlier works, we had tested the system of Mbientlab, but

t can only record three synchronized sensors [20] . 

Advantages and disadvantages of current systems: 

– Camera-based systems can measure synchronized time series of

each limb. But they are stationary and therefore not suitable for

measurements in everyday life. 

– A smartphone is useful for detecting gait activities. But it’s too

imprecise for clinical measurement. 

– IMU systems are an alternative to camera-based systems. But

they have to be synchronized. 

To calculate the gait symmetry of time series using wearable

ensors in daily life, we propose a system with two wristbands

ith IMU sensors, two insoles each with one IMU and ten force

ensors, and a smartphone for activity detection. For the measure-

ents, we synchronize all sensors if the activity walk is detected in

aily life. We propose a method to calculate the symmetry from all

easured values of the gait cycle instead of the symmetry calcu-

ation with parameters. For our prototype, we only used data from

ealthy subjects. 

. Material 

.1. Hardware 

.1.1. Smartphone 

For activity detection, we used various smartphones and tablets

ith the Android operating system. To be independent of a spe-

ific device. However, the device must be able to provide linear

cceleration and rotation data. We recorded both sensor data with
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Fig. 1. Insole with force and IMU sensor. 

Fig. 2. Wristband and IMU sensor. 
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Fig. 3. Process of synchronize, record, and evaluate data. 
 frequency of 50 %. To make the system energy efficient, we use

martphones for activity detection. Only if the smartphone has de-

ected the activity gait , the wearables record the data. 

.1.2. Wearables 

For the motion measurement, we use Bosch BNO055 IMU sen-

ors consisting of a gyroscope, accelerometer, and magnetome-

er [29] . The sensors are mounted in insoles, see Fig. 1 , and in

ristbands, see Fig. 2 . The BNO 055 sensor has an integrated co-

rocessor for the sensor fusion that calculates the absolute orienta-

ion and linear acceleration. So angle velocity, acceleration, quater-

ions, Euler angles, and linear acceleration values are received with

00 Hz . For force measurement, we use ten FSR 402 force sensors

n the insoles [30] . Furthermore, the natural rolling motion can be

easured by the horizontal arrangement of the sensors. The par-

llel arrangement of the sensors should later make it possible to

alculate the balance, see (b) in Fig. 1 . The insoles were printed

ith a 3D printer. We used flexible material to achieve a lower

ias by using the insoles. To get a lower bias and higher comfort

y a foreign insole, we made the insole out of flexible material. 

.2. Data set 

.2.1. Activity recognition 

In this data set, we use recordings of 20 healthy subjects to test

he system. For this propose, we developed an Android App. The

ubjects specified the start, end, and type of activity via the App

efore each recording. We recorded linear acceleration and rotation

ata of the Android operating system with a frequency of 50 Hz .
he users had to specify in which activity they performed. In to-

al the following activities were recorded gait, cycling, go stairs, ly-

ng, sitting, standing, smartphone lying around (table or desk), smart-

hone in use (writing a message or play a game), and use transport

drive by car or train). We have reduced the problem to a binary

roblem and use in the following only the classes gait and other .

he class other contains the activities cycling, go stairs, lying, sit-

ing, smartphone lying around, smartphone in use, standing, and use

ransport . 

.2.2. Daily life 

For the daily life data set, we have a total of 7 recordings of 7

ifferent healthy persons. The age of the persons was between 25

nd 54 years. The persons passed the following test: 

1. sitting on a chair for 1 minute 

2. stand up and standing for 1 minute 

3. walking for 1 minute 

4. ascending stairs over three floors 

5. descending stairs over three floors 

6. walking for 1 minute 

7. standing for 1 minute in front of the chair 

8. sit down 

9. sitting on a chair for 1 minute 

. Methods 

.1. Methodology 

The whole process for the recognition of gait data is based on

he communication between our Android App and four wearable

evices (two wristbands and two insoles). Fig. 3 shows the pro-

ess. We have separated the functional tasks of the smartphone

nd wearables with a dotted line. However, the wearables work

nly as slaves, so the smartphone must always send a signal for

tarting a function. For this reason the tasks Stop Recording, Data

ransmission, Synchronization and Start Recording are involved by

oth devices. 

At the beginning of the workflow, we make an activity recogni-

ion. Thus, we want to distinguish the activity gait again, the activ-

ty other . The activity detection is designed to keep the wearable

ensors in standby mode until the activity gait is detected. This ac-

ivity detection extends the usage time of the wearable devices. 

When a person does the activity gait , the app checks if a

ecording is in process. If not, the wearable devices have first syn-

hronized, and then the recording of the movement starts. When
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Fig. 4. Schema of the CNN layers for activity recognition. 
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the activity other as gait has been detected, and the recording is

in process, the recording stopped, and the data transmitted to the

smartphone. 

For the symmetry calculation, we need a more accurate detec-

tion of the strides than with the activity recognition. For this rea-

son, we perform a stride detection by using CNN to detect individ-

ual strides of the foot. After that, the symmetry of the strides can

be calculated. 

4.2. Activity recognition 

To enable energy-efficient use of the wearable devices, they

are only powered when they are in use. The energy-efficient use

means that the wearable devices only have to be switched on dur-

ing recording. For this reason, we decided to use a binary activ-

ity classifier in the smartphone device. This classifier enables us to

distinguish the activity gait from other like cycling, go stairs, lying,

sitting, smartphone lying around, smartphone in use, standing, and

use transport. 

For the activity detection, we use data of the linear acceleration

and rotation data of the Android operating system (OS) at a fre-

quency of 50 Hz . As features, we use a fixed window width of 10 s

and an overlap of 50 %. We use as input the x-, y-, and z- axis of

the linear acceleration and rotation data of the complete window

as input for a 1D CNN classifier. Fig. 4 shows the design of the
Fig. 5. Process of sy
NN. We chose CNN because other researchers have also achieved

ood results with CNN [13,14] . 

For the construction of the model, we use the activation func-

ion rectified linear unit (ReLU) function except for the output

ayer. The first layer is a convolutional layer with 300 filters and a

ernel size of 9. Next is a max pooling with a size of 5 and a drop-

ut with 0.2. Then follows another convolution layer with 100 fil-

ers and a kernel size of 7. Then again, a max pooling with a size

f 5 and a drop-out with a probability of 0.25. Next comes a flat-

ing layer. In the following, there are different dense layers with

0, then 10, and finally 50 neurons. The last layer is the output

ayer, which uses a sigmoid function as the activation function. 

For training, we have separated the data by persons. This en-

ures that the same person is not included in the training and

est data set. We split the data that 66 % (13 subjects) are used

or training, and 34 % (7 subjects) for testing. During training, we

se different epochs and batch sizes. In our case, the setting of 100

pochs and 100 batch sizes has proven good results. 

.3. Synchronization 

.3.1. Process 

The synchronization takes place according to the following

cheme, see Fig. 5 . The master device is the smartphone, and the

laves are the four wearable devices. 
nchronization. 
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1. The master sends an empty Bluetooth packet to the first slave

(reference slave) and the second slave. 

2. Each slave replies with its device time (milliseconds since

power-on) as soon as it receives the packet of the master. 

3. The master receives the responses and measures the time dif-

ference between them. 

4. To avoid random response times (e.g., caused by physical influ-

ences), the process is repeated multiple times. 

5. The median is the time difference between the reception of the

packets by the reference slave and the second slave. 

6. The master calculates the offset of the second device (see for-

mula 2) and sends it to the second device. 

7. Now, the second slave knows its offset compared to the refer-

ence slave. 

8. Steps 1 to 7 are repeated with the first slave and the third slave.

9. Steps 1 to 7 are repeated with the first slave and the fourth

slave. 

As a result, we get the offsets between the reference device

nd the other three measuring devices. The four measuring de-

ices record data synchronously. Unfortunately, a drift can occur

etween the devices. To prevent this, the synchronization is re-

eated before each recording. 

.3.2. Verification test setup 

To be able to measure the Bluetooth latency correctly, we have

ired the microcontrollers to each other. Two microcontrollers are

onnected by wire using their serial output and input. The output

in of one device is connected with the input pin of the other de-

ice and vice versa. In the beginning, the outputs are set to ”low”.

ne of the two devices now initiates a ”high” output and starts

 timer. The other device registers this event by reading a ”high”

nput and answers to the first device by setting its output pin to

high”, too. The first device stops the timer as soon as it registers

 ”high” input. According to repeated measurements, the serial la-
Table 1 

Latency between Android and two microcontrollers between sending an

send M2 are the timestamps when the commands are executed by the An

is the wired latency between both microcontrollers when receiving the p

the packets from the microcontrollers. l is the difference of R 2 − R 1 . Bold

A send M1 A send M2 DIFF 1 RL 

1552473386320 1,552,473,386,332 12 23 

1552473402974 1,552,473,402,985 11 27 

1552473411800 1,552,473,411,804 4 23 

1552473415820 1,552,473,415,829 9 30 

1552473418088 1,552,473,418,100 12 28 

1552473420520 1,552,473,420,527 7 28 

1552473422598 1,552,473,422,604 6 31 

1552473424513 1,552,473,424,523 10 29 

1552473426282 1,552,473,426,295 17 28 

1552473428201 1,552,473,428,209 8 28 

1552475001845 1,552,475,001,849 4 43 

1552475013106 1,552,475,013,111 5 19 

1552475014617 1,552,475,014,624 7 33 

1552475015951 1,552,475,015,964 13 32 

1552475017448 1,552,475,017,460 12 23 

1552475018910 1,552,475,018,920 10 24 

1552475020302 1,552,475,020,309 7 31 

1552475021704 1,552,475,021,713 9 31 

1552475022982 1,552,475,022,995 13 29 

1552475024662 1,552,475,024,670 8 28 

1552477976517 1,552,477,976,523 6 42 

1552477978212 1,552,477,978,222 10 29 

1552477979992 1,552,477,980,003 11 16 

1552477981607 1,552,477,981,616 9 31 

1552477983153 1,552,477,983,165 12 31 

1552477984567 1,552,477,984,581 14 31 

1552477986029 1,552,477,986,036 7 43 

1552477987445 1,552,477,987,455 10 28 
ency is lower than 1 ms Because this latency measurement does

ot influence the synchronization latency, it is ignored in the fol-

owing section. 

.3.3. Latency bluetooth 

In the next step, we measure the latency and offset of the An-

roid OS to send a Bluetooth packet to the microcontrollers. Fur-

hermore, we also measure the time at which packets are received

f the microcontrollers have sent them. For the measurement of the

ffset between the microcontrollers, we use the test setup from

ection 4.3.2 . For the test setup, the microcontrollers (M1) and

M2) were placed at the same distance to the Android smartphone

A) so that the same signal strength exists for all devices. Other-

ise, this can corrupt the result. The results of the measurement

an be seen in Table 1 . The first and second columns A send M1

nd A send M2 are the time stamps of the Android OS in mil-

iseconds ( ms ) when the commands were executed. Diff 1 is the

ifference in ms between column (AsendM2) − (AsendM1) . The RL

olumn is the wired offset between the two microcontrollers mea-

ured using the method in the 4.3.2 section. This offset is the real

ffset. R1 and R2 are the timestamps in ms of the received Blue-

ooth packets of the microcontrollers. The last column l reflects the

ifference of the columns R 2 − R 1 in ms . This offset, the Android

S uses to calculate the device offsets. Perfect synchronization is

chieved when RL = l. 

The measurement was repeated three times. Therefore each

easurement is separated in the table by a double line. The

olumns RL and l show a correlation to each other. For this rea-

on, it was written in bold. 

The Table 1 shows that the packets are sent with different pri-

rities by the Android OS. Thus the column Diff 1 does not corre-

ate with RL . The values of the three measurements of A send M1

nd A send M2 by Pearson correlation give the following results

.034, -0.272, -0.617. This means that there is no correlation. On
d receiving time for three different executions. A send M1 and A 

droid OS. Diff 1 is the difference of (A send M2) − (A send M1) . RL 

ackets. R1 and R2 are the times when the Android OS has received 

 shows the correlation between wired l and calculated l . 

R 1 R 2 l 

1,552,473,386,373 1,552,473,386,396 23 

1,552,473,403,025 1,552,473,403,054 29 

1,552,473,411,851 1,552,473,411,872 21 

1,552,473,415,863 1,552,473,415,897 24 

1,552,473,418,131 1,552,473,418,160 29 

1,552,473,420,564 1,552,473,420,593 29 

1,552,473,422,638 1,552,473,422,672 34 

1,552,473,424,557 1,552,473,424,585 28 

1,552,473,426,327 1,552,473,426,355 28 

1,552,473,428,239 1,552,473,428,267 28 

1,552,475,001,888 1,552,475,001,929 41 

1,552,475,013,159 1,552,475,013,179 20 

1,552,475,014,658 1,552,475,014,730 72 

1,552,475,015,996 1,552,475,016,029 33 

1,552,475,017,495 1,552,475,017,517 22 

1,552,475,018,958 1,552,475,018,979 21 

1,552,475,020,346 1,552,475,020,380 34 

1,552,475,021,751 1,552,475,021,780 29 

1,552,475,023,021 1,552,475,023,049 28 

1,552,475,024,709 1,552,475,024,737 28 

1,552,477,976,564 1,552,477,976,605 41 

1,552,477,978,258 1,552,477,978,287 29 

1,552,477,980,046 1,552,477,980,067 21 

1,552,477,981,651 1,552,477,981,685 34 

1,552,477,983,193 1,552,477,983,227 34 

1,552,477,984,611 1,552,477,984,645 34 

1,552,477,986,078 1,552,477,986,120 42 

1,552,477,987,486 1,552,477,987,515 29 
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Fig. 6. Process of stride detection with CNN. 
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the other hand, the columns l and RL correlate strongly by Pearson

correlation with the following values 0.743, 0.580, 0.982. 

This can be explained by the fact that the microcontrollers M1

and M2 process the commands sequentially, and thus all com-

mands are equally authorized. Furthermore, it is possible to receive

signals at the app in real-time because there are several threads

available. 

Out of this knowledge, we can say the receive time of the

smartphone is the offset in which the microcontrollers sent the

signal. We use this fact for synchronization. In summary, we can

note that when sending packages of two microcontrollers at the

same time, these also arrive simultaneously. 

4.3.4. Synchronization algorithm 

Based on the data from sections 4.3.2 and 4.3.3 we can now

propose a solution to synchronize two microcontrollers via Blue-

tooth. The following steps describe the procedure of the algorithm:

1. The Android device A sends a packet to microcontrollers M 1

and M 2. 

2. M 1 sends a packet to A . The packet holds a timestamp of the

system time t 1 directly before sending it. 

3. M 2 sends a packet to A . The packet holds a timestamp of the

system time t 2 directly before sending it. 

4. A receives a packet from M 1 at a real-time R 1. 

5. A receives a packet from M 2 at a real-time R 2. 

With this information we can calculate our receive latency l in

formula (1) where c represents an possible error. 

l = R 2 − R 1 + c (1)

To determine the offset o from M 2 to M 1, we use the formula

(2) . 

o = (t2 − t1) + l (2)

Of course, in the proposed algorithm, errors can occur, which

are the result of disturbances in the magnetic field or other phys-

ical effects. Therefore we perform the algorithm eleven times and

use the median of the latency to determine the best synchroniza-

tion between the devices M 1 and M 2. 

4.4. Stride detection 

After the activity recognition algorithm has identified the

phases of the activity gait , we use the transmitted, synchronized

sensor data of the wearable devices to perform a stride detection.

In the version of our proposed system, we used only the insole

data for the stride detection and symmetry calculation. To train

the classifier, first, we manually labeled the data After labeling,

the data was normalized and resampled to a uniform length. Then,

we trained our CNN to get a model for stride detection.To detect

strides from the daily life data set, we use automatic framing to

extract fragments from the recording. By fragments, we mean dif-

ferent parts of a recording. These fragments we normalized and

resampled. The CNN model classifies these fragments for possible

strides. This process is shown in Fig. 6 . 
Fig. 7. Schema of th
.4.1. Normalization 

We use a Min-Max-Normalization to normalize all data be-

ween range 0 to 1. The normalization were executed for every

 i ∀ i ∈ { 0 , . . . , N − 1 } of the feature X , where N is the length of

eature X , see formula 3 . The result is a normalized vector X 

norm 

ith the values x norm 

i 
∈ X norm . The functions min ( X ) and max ( X ) re-

urn the minimum and maximum of the feature X . 

 

norm 

i = 

x i − min (X ) 

max (X ) − min (X ) 
(3)

.4.2. Resampling 

For using the CNN classifier, we need a uniform signal length.

herefore we transform all signals to a uniform length of 100 val-

es. The Python function resampling in the library SciPy use a Fast

ourier Transformation (FFT) based method [31] . 

.4.3. CNN 

To build the CNNs model, we use a sequential network, see

ig. 7 . 

As the activation function, we use the rectified linear unit

ReLU) function with except at the output layer. As input we use

he x-, y-, and z-axis of the linear acceleration and Euler angles.

he first one-dimensional convolutional layer creates 100 filters

ith a kernel size of 3. To reduce the filters, we apply a max pool-

ng with a pool size of 3 and a drop-out with probability 0.2. After

he second convolutional layer consists of 100 filters and a kernel

ize of 5, this is followed by max-pooling again with a pool size of

. A drop-out follows them with probability 0.2, where single con-

ections are randomly deleted [32] . After that, we have a flattening

ayer to adjust the dimensions for the neural network (NN). Next,

e have two dense layers. The first has 20 neurons, and the second

0 neurons. Last we have an output layer with a sigmoid function

s the activation function. As a result, we obtain a probability of

he signal being a stride. 

.4.4. Automatic framing 

A real signal cannot be manually labeled. Thus, an algorithm

hould be that task. For this reason, we use automatic framing.

he automatic framing creates dynamic window sizes, which we

se as input for the CNN in the stride detection. For detection, we

se dynamic window sizes. The average duration of a stride is 1.1 s

33] that is equivalent to 110 values of the data. Therefore we use

n average window size of 110 ± 30 values. The window w can
e CNN layers. 
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Fig. 8. Predicted strides. 

h

w  

F

 

v  

4  

i  

h  

s  

T  

E  

t  

s

o  

4

 

t  

l  

 

f  

i

 

(  

Fig. 10. DTW Symmetry result at person 1 with a distance value of 130.52. 
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ave the following sizes 

 = { 80 , 90 , 100 , 110 , 120 , 130 , 140 } . (4)

rom the signal to be classified, windows with all sizes are used. 

All dynamic windows are resampled to a uniform length of 100

alues and normalized with the functions from Section 4.4.1 and

.4.2 . If the CNN detects a stride with more than 70 % probabil-

ties within a window, it is saved in a list. The stride with the

ighest probability from the list is only used and defined a valid

tride. We mark the absolute minimum within a stride ± 10 ms .

o distinguish the strides from each other, we use overlapping, see

q. 5 . Overlapping allows us to separate new strides from others. If

he predicted stride lies within this range, it is marked as detected

tride, see Fig. 8 . 

v erlapping = det ect ed stride + (a v erage stride · 0 . 8) (5)

.5. Symmetry 

The calculation of the symmetry of two strides is possible by

he previously performed synchronization in Section 4.3 . To calcu-

ate the symmetry, we first do a stride detection like in Section 4.4 .

So that we always have a fixed reference timestamp (e.g., right

oot) point within a stride. We use the time stamp of the minimum

nside a stride, see Fig. 9 . 

To measure the symmetry distance between the time series

strides) of the right and left foot, we use the DTW. DTW has be-
Fig. 9. Orientation data of the left and right foot with the corresponding minima. 

5

 

t  

I  

a  

C  

c  

c  

t  

t

T

R

ome very well established in the analysis of time-series signals.

n contrast to Euclidean distance, this method can compensate for

ime warping. Based on this flexibility, it is a popular method for

he analysis of time series in medicine, science, and industry. The

dea with DTW is that not the distance of two indices is calcu-

ated, but the distance to the most fitting one. Thus allows com-

aring time series with each other if they recorded with different

uration or frequency. 

In the first step, the algorithm calculates distances between the

ime series ( x i ) 1 ≤ i ≤ n (e.g. orientation angle of the right foot) of

ength n and ( y j ) 1 ≤ j ≤ m 

(e.g. orientation angle of the left foot) of

ength m , resulting in a n times m matrix D = D i j containing dis-

ances D ij between y j and x i . The distances within the matrix are

alculated by the sum of the current distance and the minimum

istance of a previous neighboring element, see Eq. 6 [34] . 

 i j = (x i − y j ) 
2 + min { D i −1 , j , D i −1 , j−1 , D i, j−1 } (6)

A distance D ij of 0 means 100 % symmetry of the measured val-

es. The higher the value D ij , the lower is the symmetry of the two

eet, see Fig. 10 . 

. Results 

.1. Activity recognition 

For recognition of activity gait , we have performed a five-fold

ross-validation. The results are shown in Table 2 . For the results

e have specified precision, recall, F1-Score and Accuracy. For each

olumn we have given the average value and standard deviation. 

.2. Synchronization 

In the Tables 3 , 4 , and 5 the measured values of a synchroniza-

ion are shown. In the tables, the first column is a numbered index.

t is followed by the receiving time of the reference microcontroller

nd the third column of the to be synchronized microcontroller.

olumn four is the calculated latency of both microcontrollers, and

olumn five is the wired measured latency over the wires. The last

olumn shows the error from calculated to measured latency. For

he most accurate timestamp, we calculate the median of the la-

encies l . 
able 2 

esults for recognition of activity gait . 

precision recall F1-Score accuracy 

CNN 0.958 ± 0.031 0.683 ± 0.023 0.884 ± 0.011 0.947 ± 0.005 
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Table 3 

Latency between microcontroller M1 and M2. 

index M1 M2 l wired l c 

1 1,552,919,014,830 1,552,919,014,946 116 81 35 

2 1,552,919,014,999 1,552,919,015,047 48 8 40 

3 1,552,919,015,776 1,552,919,015,154 -622 -665 43 

4 1,552,919,015,838 1,552,919,015,897 59 55 4 

5 1,552,919,015,950 1,552,919,015,972 22 20 2 

6 1,552,919,016,005 1,552,919,016,014 9 6 3 

7 1,552,919,016,055 1,552,919,016,064 9 7 2 

8 1,552,919,016,098 1,552,919,016,106 8 5 3 

9 1,552,919,016,147 1,552,919,016,156 9 8 1 

10 1,552,919,016,191 1,552,919,016,199 8 4 4 

11 1,552,919,016,240 1,552,919,016,262 22 21 1 

Table 4 

Latency between microcontroller M1 and M3. 

index M1 M3 l wired l c 

1 1,552,919,585,669 1,552,919,585,703 34 34 0 

2 1,552,919,585,731 1,552,919,585,728 -3 -5 2 

3 1,552,919,585,770 1,552,919,585,781 11 8 3 

4 1,552,919,585,824 1,552,919,585,827 3 4 1 

5 1,552,919,585,862 1,552,919,585,877 15 16 1 

6 1,552,919,585,924 1,552,919,585,914 -10 -8 2 

7 1,552,919,585,961 1,552,919,585,978 17 17 0 

8 1,552,919,586,024 1,552,919,586,014 -10 -8 2 

9 1,552,919,586,061 1,552,919,586,078 17 17 0 

10 1,552,919,586,124 1,552,919,586,114 -10 -9 1 

11 1,552,919,586,161 1,552,919,586,171 10 9 1 

Table 5 

Latency between microcontroller M1 and M4. 

index M1 M4 l wired l c 

1 1,552,988,793,978 1,552,988,794,019 41 41 0 

2 1,552,988,794,060 1,552,988,794,056 -4 5 9 

3 1,552,988,794,110 1,552,988,794,119 9 8 1 

4 1,552,988,794,154 1,552,988,794,145 -9 -4 5 

5 1,552,988,794,203 1,552,988,794,199 -4 -5 1 

6 1,552,988,794,227 1,552,988,794,236 9 9 0 

7 1,552,988,794,258 1,552,988,794,262 4 3 1 

8 1,552,988,794,295 1,552,988,794,313 18 17 1 

9 1,552,988,794,359 1,552,988,794,348 -11 -10 1 

10 1,552,988,794,395 1,552,988,794,404 9 11 2 

11 1,552,988,794,451 1,552,988,794,442 -9 -8 1 

Table 6 

Latency between microcontroller M1 and M2. 

index l c 

3 -622 43 

8 8 3 

10 8 4 

6 9 3 

7 9 2 

9 9 1 

5 22 2 

11 22 1 

2 48 40 

4 59 4 

1 116 35 

 

 

 

 

 

Table 7 

Latency between microcontroller M1 and M3. 

index l c 

6 -10 2 

8 -10 2 

10 -10 1 

2 -3 2 

4 3 1 

11 10 1 

3 11 3 

5 15 1 

7 17 0 

9 17 0 

1 34 0 

Table 8 

Latency between microcontroller M1 and M4. 

index l c 

9 -11 1 

4 -9 5 

11 -9 1 

2 -4 9 

5 -4 1 

7 4 1 

3 9 1 

6 9 0 

10 9 2 

8 18 1 

1 41 0 

Table 9 

Daily life stride detection. 

recall precision F1-Score Accuracy 

CNN 0.978 0.978 0.974 0.988 

Table 10 

Results of the symmetry calculation. 

subject number strides DTW median 

1 90 130.52 

2 45 309.91 

3 86 576.42 

4 37 351.40 
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In the Tables 6 , 7 , and 8 the latencies are shown in sorted and

the median is printed bold. All three tables provide a positive error

of 1 ms to the reference device. Thus, the total latency is 1 ms . In

other measurements, we have a total error of 3 ms . Since we record

the sensor data with 100 Hz , this error is tolerable for symmetry

calculation. 
.3. Stride detection 

For stride detection, we have performed a seven-fold cross-

alidation. The results are shown in Table 9 . For the results we

ave specified precision, recall, F1-Score and Accuracy. For each

olumn we have given the average value and standard deviation

35] . 

.4. Symmetry 

The Table 10 shows the results for the symmetry of four differ-

nt healthy persons. The first column is the subject number. Col-

mn two is the number of strides used to calculate symmetry. In

he last column, the median distance of the DTW is shown. All

ersons had no motor dysfunctions. Person 3 has the largest sym-

etry deviation. An earlier operation of one knee probably causes

hese motor dysfunction. The median distance of DTW from per-

on 3 is shown in Fig. 11 . In contrast, the median distance of DTW

f person 1 in Fig. 10 is smaller than that of person 3. Thus, the

ait symmetry of person 1 is more accurate than that of person 3. 
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Fig. 11. DTW Symmetry result at person 3 with a distance value of 576.42. 
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. Discussion 

We have presented a system for real-time analysis of gait sym-

etry that can be used comfortably by people in their daily life

nd is independent of the location. The system can be used for

easurement of human gait. 

By developing an Android app for activity recognition, we were

ble to show that a smartphone can distinguish between activity

ait and other activities such as standing, lying, cycling, or writing

essages. With an accuracy of 94.7 % we obtain similar results to

ther researchers [13–15] . Activity recognition allows us to switch

n the wearable sensors, and data recording only activity gait is

ecognized. This method is an energy-efficient solution. 

Furthermore, we present a solution to synchronize several

earables sensors. In literature, this problem has already been rec-

gnized, and there were several approaches. However, the problem

s that the devices of Mbientlab can only synchronize three devices

20] . We synchronize four wearables for four extremities. Another

olution was to synchronize the time during charging by cable [18] .

owever, this solution has the disadvantage that in more extended

se, a drift of the clock occurs. We synchronize the wearables be-

ore each recording (recognition of activity gait ). This way, we start

ach recording without drift of the clock. 

In most of the papers dealing with symmetry, they use the

tride length, stride duration, and different gait phases to calculate

he ratio of the left and right leg [6,10,11,23] . In contrast, our sym-

etry calculation considers the complete time series. However, the

ynchronization of the sensors is essential for this. For stride detec-

ion, we use a combination of automatic framing and CNN. The use

f CNN’s for stride detection has proven to be very useful for us.

ther work has already been able to benefit from the technology

35] . The symmetry of the legs is analyzed with DTW. 

. Conclusion 

With our work, we were able to present a complex system that

an analyze the human gait symmetry with the help of wearable

evices in daily life. For future work, we want to calculate further

eatures from the time series. By synchronizing the wearable

evices, more fundamental symmetry characteristics can be cal-

ulated, like cadence, cyclogram, mono pedal phase, or bipedal

hase. Other features such as symmetry ratio, symmetry index,

ait asymmetry, symmetry angle, stride length, or stride height

re also possible. These additional features provide a wide range

f features to evaluate human gait. With all these features, more

ccurate classification of PD stage in the use of machine learning

hould be possible. 
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