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Frequency domain description of Kohlrausch response through a pair of Havriliak-Negami-type
functions: An analysis of functional proximity
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An approximation to the Fourier transform (FT) of the Kohlrausch function (stretched exponential) with shape
parameter 0 < β � 1 is presented by using Havriliak-Negami-like functions. Mathematical expressions to fit
their parameters α, γ , and τ , as functions of β (0 < β � 1 and 1 < β < 2) are given, which allows a quick
identification in the frequency domain of the corresponding shape factor β. Reconstruction via fast Fourier
transform of frequency approximants to time domain are shown as good substitutes in short times though biased
in long ones (increasing discrepancies as β → 1). The method is proposed as a template to commute time and
frequency domains when analyzing complex data. Such a strategy facilitates intensive algorithmic search of
parameters while adjusting the data of one or several Kohlrausch-Williams-Watts relaxations.
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I. INTRODUCTION

A. Ubiquity and relationship to other relaxations

The stretched exponential function, or Kohlrausch function
φK,β(t) ≡ e−tβ , 0 � t < ∞, 0 < β � 1 [1], is one of most
widely used relaxation functions to describe retarded (step)
response in the temporal domain (henceforth called t space)
when talking about polymer dielectric spectroscopy, photolu-
miniscence, capacitor discharging, elasticity stress relaxation,
α transition in vitreous or glassy materials [2–5], etc. There
is no doubt, when looking at its geometrical shape, at the
Cole-Cole diagram in frequency space (ω space), that it
should belong, though distorted, to a more spacious family
of relaxation functions which describe such physical behavior
of loss and reaction in the areas cited. The most common
and simple exponents of this family would be the Debye
(D) [6], 1

1+iω
; the Cole-Cole (CC) [7], 1

1+(iω)α , 0 < α < 1;

the Cole-Davidson (CD) [8], 1
(1+iω)γ , 0 < γ < 1; and the

Havriliak-Negami (HN) [9], 1
(1+(iω)α )γ , 0 < α < 1, 0 < γ < 1,

functions.1 Nevertheless the expression of φK,β in the ω

space is nearly always in the form of an asymptotic or slow
convergence series depending on values of β and ω [10–15],
or numerically calculated [4,16–19], which makes it difficult
to establish and quantify a “functional proximity” of physical
meaning to the above-mentioned functions. In the same way
the relaxation functions in Fourier space or it is not possible
to express them in a compact form (HN), or they exhibit
unphysical properties, as a divergence at t = 0, when described
in t space (CD) [20].

Despite the anomalies, great efforts are made to describe
the Kohlrausch function as a numerical table, an algorithm,
or an approximation as a sum of related functions in ω

space because of its ubiquity and importance in condensed
matter physical phenomena [4,17,19,21–23]. In addition the
behavior in ω space is expected to be more regular than that
in t space, though the latter is thought of as more natural

*tlazcala@yahoo.es
1See Appendix A.

to a physical description of molecular dynamics, e.g., the
Kohlrausch relaxation function as a consequence of multiscale
cluster relaxation or a paused or frozen random walk of dipolar
orientations [24,25]. Moreover, in conjunction with the math-
ematical uniformity, which allows an easier computational
treatment, some light is shed on the structure in experimental
terms. Since the Kohlrausch function is expressed as a “sum” of
exponential relaxations weighted in their characteristic times
(i.e., the Laplace transform of a positive density gβ(s) � 0
when 0 < β � 1) [13,16,26–32] its counterpart in ω space is
expressible too as a weighted “sum” of simple and regular
relaxations of Debye type (i.e., the Stieltjes transformation
minus the same density gβ(s) [29,33,34]).

This decomposition allows us to interpret the global
relaxation in ω space as the one of small parts in a larger
superstructure, for example, simple dipolar relaxation of polar
residues in a larger polymeric molecule or that of clusters with
a distribution of scales among them [3–5,24,25]. Of course
this physical insight serves as a mathematical description
but requires a deeper analysis of every system to offer
an explanatory mechanism. In addition to the Kohlrausch
relaxation function, others are used with the same purpose and
techniques (D, CC, CD, HN, and some mixed types), whereby
a primary functional form to generate the others should
be chosen on the basis of mathematical or computational
properties instead of simple physical interpretation [20,35].

The Kohlrausch function shows some unphysical charac-
teristics at early times [4,23,36]; for any 0 < β < 1 the slope
of the function at t = 0 is infinity. So though the collective
(correlated) motion of the ensemble is well described at large t ,
the inertia of individual elements has been usually disregarded
in the relaxation function at small times. At large times the
function is however appropriate [3] and a displacement in time
origin could avoid the initial singularity [4,23]. Consequently
the indicated correction solves the problem in t space at
the expense of complicating even more an expression in ω

space. This drawback forces two considerations about the
change from a temporal domain to a frequency one through
one-sided Fourier transform. One is that any physically based
modification of Kohlrausch’s law must be accompanied by
an efficient algorithm to calculate Fourier coefficients of the
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original function as they will be the first-order approximation
to the new ones and the starting point for a series expansion.
No specific clues in the literature have pointed out how to
do this [4,23]. Second, we should note that most likely the
analytical function represented by the series and corresponding
to Kohlrausch’s law in ω space possesses mathematical
singularities we overlooked at first.

This latter point dissuades one from a direct approach over
Fourier transform of the Kohlrausch function expressed as
a ω series (see Sec. II A). So in Sec. II we examine some
characteristics of the Kohlrausch function and its derivative in t

space and ω space, which sustain the election of this derivative
as the function to be handled. In Sec. III our approximation is
presented, and in Sec. IV departure (error) of the reconstruction
from the original function, as well as the possible extension
to values of the squeezed exponential, 1 < β < 2, not so
common in the literature [19,32], are discussed.

II. REGULARITY IN THE FOURIER TRANSFORM

A. Mathematical considerations

Considering ω ∈ C, any singularity outside of the real line
(ω ∈ R) will restrict the convergence of the Fourier series
and its numerical usefulness (ω → 0 implies large oscillating
terms [10,30–32]). In this sense Wintner [10] has shown that

ω

∫ ∞

0
e−tβ cos(ωt)dt = ω−β

∫ ∞

0
e−tω−β

sin
(
t

1
β

)
dt

≡ ω−β�β(ω−β),

with ω > 0 and ω−β > 0, and proved that �β(z), z ∈ C, 0 <

β < 1, is an entire function. The problem appears when doing
the transformation backward because it has branch points
(rational or transcendental) and it is singular at ω = 0, which
destroys for the two-sided Fourier transform the analytical
properties obtained for �β(z). The Taylor expansion of �β(z)
gives the series for the Fourier transform and explains why it
converges for β < 1 and diverges for β > 1, the latter being
useful only as an asymptotic expansion.

Thus a direct approach in calculating Kohlraush’s law
Fourier transform is not necessarily the best mathematical
option, nor is a physical approach because in many
experiments the relaxation function is not measured, but the
normalized transient function is measured instead. This one,
for example, in experiments with dielectrics, is obtained when
a constant electric field polarizing a sample is switched off
instantaneously and the induced field is fading off. In terms of
frequency response we write the complex dielectric constant,
ε∗(ω), as

ε∗(ω) − ε∞
εo − ε∞

=
∫ ∞

0
e−iωt

(
−dφ

dt

)
dt, (1)

so it makes sense to describe the derivative −φ′(t) and
integrate it later to recover the response function. Besides it
has the advantage of our ability to modify it parametrically
to represent a wider kind of relaxations starting from that of
Kohlrausch and ending in a CD function [20].

According to such mathematical and physical reasons, we
are prone to expect a nonsingular approximation through a
detailed description of the first derivative. To strengthen this

point of view, we review the analytical behavior of both the
function and its derivative in the t and ω domains.

B. The extended exponential function: e−tβ

We denote the one-sided Fourier transform of e−tβ as

χβ(ω) =
∫ ∞

−∞
H (t)e−tβ−iωtdt =

∫ ∞

0
e−tβ−iωtdt (2)

and the transform of its (minus) derivative as

ψβ(ω) =
∫ ∞

−∞
H (t)βtβ−1e−tβ − iωtdt

=
∫ ∞

0
βtβ−1e−tβ − iωtdt, (3)

with H (t) being the Heaviside function. Integrating by parts
and taking into account that φK,β(0) = 1, φK,β(t → ∞) =
0, and |e−iωt | = 1∀t ∈ R, we obtain the following closure
relation:

1 = −
∫ ∞

0

d

dt
[φK,β(t)e−iωt ]dt = ψβ(ω) + iωχβ(ω). (4)

Any approximation to ψβ(ω) will give us automatically
another one to χβ(ω) allowing the latter to recover, by
inverse transform, a function close to e−tβ . So the proximity
obtained in reconstruction in t space will grade the success
achieved in mimicking ψβ . In this sense we should point
out a handicap always present independently of goodness
of numerical packages utilized (e.g., fftw3 for Fourier
Transform [37]): along with the discretization of the integrals
implicit in the fast Fourier transform (FFT) algorithm and
the sampling chosen to represent φK,β(ti) and −φ′

K,β (ti), two
severe restrictions which downgrade the quality of calculations
are imposed. First, the lower limit in integral ψβ(ω) cannot
be zero because tβ−1 → ∞ as t → 0 for β < 1. Second,
the upper limit must be finite (T < ∞) in order to store the
sampling of the mentioned functions in a computer’s memory.
In other words we are not using the intended limit

f̃β(ω) = lim
T →∞

∫ T

0
fβ(t)e−iωtdt

= lim
T →∞

∫ ∞

−∞
{H (t) − H (t − T )}fβ(t)e−iωtdt ;

instead we are calculating a member of such succession whose
distance to f̃β(ω) depends on β and T .2 It happens that the
evaluation of the integral for fixed ω is lesser in modulus
than expected, as a numerical sampling of this integral for a
given β and different T < ∞ shows. This situation is getting
worse when β → 0+ because the decaying function e−tβ ,
which is integrable, tends to e−1 ∀t > 0, which is not, making
the erased part of the integral f̃β [i.e.,

∫ ∞
T

fβ(t)e−iωtdt] not
negligible as ω → 0+.3 Nevertheless, being aware of this,

2Here, fβ stands for φK,β (t) or −φ′
K,β (t), and f̃β stands for χβ or

ψβ , respectively.
3The window function, WT (t) ≡ {H (t) − H (t − T )}, when Fourier

transformed yields a T sinc(ωT/2) function, in modulus, of con-
tracting width as T → ∞. Its behavior is that of an identity of the
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FIG. 1. (Color online) Modulus of Kohlrausch (and related functions) fast Fourier transforms for several β values. (a) 0 < β � 1, δβ = 0.2.
(b) 1.2 � β � 2, δβ = 0.2. (c) 2.6 � β � 5, δβ = 0.6. (d) 6.5 � β � 20, δβ = 4.5, and β = 100 (dot-dashed line). Insets: General trend,
β = 0.5 (a), β = 1.5 (b), β = 3.5 (c), and β = 12.5 and (dot-dashed line) β = 100 (d).

in the following sections for every β > 0 we use the same
T and sampling (ti+1 − ti = δt,∀i ∈ N) for the sake of a
homogeneous treatment and as an instrument to determine
the limits of our approach as β → 0+.

However, even with this loss, we have found out that the
modulus of χβ is growing toward infinity as β → 0+ at ω = 0.
Besides it is observed from the apparent continuity of the
modulus that they are decreasing monotonic functions while
β < 1, for low and medium frequencies. They are decreasing
functions too at high frequencies because e−tβ , β > 0, is
continuous and integrable and so the Riemann-Lebesgue [38]
lemma implies the modulus of χβ goes to zero as ω → ∞.
Nevertheless this trend is restricted by the inherent periodicity
and smoothness of functions in the FFT algorithm. As a
consequence the Fourier transforms must be stalled in a
minimum at the frontier, ωmax � π

δt
, of the ω domain (see

Fig. 1).
The case β = 1 gives us an analytical expression for the

modulus |χ1(ω)| = 1√
1+ω2 , which explicitly shows a behavior

qualitatively shared by the other modulus |χβ(ω)|β < 1. The
slope of |χ1| at ω = 0 is zero and decays as ω−1 when ω → ∞
and in log ω scale it looks like a slow declining rounded step.
For lesser values of β numerical calculations present a similar
shape with a greater height and a smaller plain as this parameter
evolves from β = 1 to β → 0+ [see Fig. 1(a)].

convolution product, i.e., W̃T ∗ f̃β

T →∞−→ f̃β when fβ ∈ L1(R), which
is not the case anymore in the limit β → 0+.

In the region 1 < β < 2 the modulus |χβ(0)| is still
diminishing though at slower rate than in the previous one. The
heights accrue, the widths enlarge, and the asymptotic tails go
in the same manner as all the ω space that is available for our
calculations. The curves still remain smooth without kinks or
oscillations; however, the transition from plain to decaying tail
becomes steeper as β tends to 2 [see Fig. 1(b)]. By contrast
at some point of the interval 2 < β < 3 the modulus |χβ(0)|
reaches a minimum and an oscillatory profile distorts the curve
progressively with the β value. After that point the function at
zero increases its value till |χ∞(0)| = 1, and the oscillations
are developed fully along the tail [see Figs. 1(c) and 1(d)]. In
detailed form, we see

χβ(0) =
∫ ∞

0
e−tβ dt = �

(
1 + 1

β

)
, (5)

and limβ→0+ �(1 + 1/β) = ∞ jointly with �(1 + 1/β) = 1,
for β = 1, and from the fact the Gamma function, �,
interpolates as a convex function the factorial, the above-
mentioned trend of χβ(0), β < 1, is justified. Moreover
limβ→∞ �(1 + 1/β) = 0! = 1 so the Rolle’s theorem implies
an extremal point in the interval β ∈ (1,∞), which is a
minimum because �(x) > 0 and log �(x) is a convex function
of x ∈ (0,∞). A further refinement shows the minimum is
in interval 2 < β < 3, as �′(1 + 1/3)/�(1 + 1/3)< 0 and
�′(1 + 1/2)/�(1 + 1/2)> 0. A result that points to a radical
change of conduct in χβ not only at ω = 0. It is shown, nu-
merically, that the decreasing with ω for each shape parameter
β is slower than in the case β = 2, at low frequencies. For
medium to high frequencies the modulus behavior is still of a
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FIG. 2. (Color online) Fast Fourier transform modulus of βtβ−1e−tβ for several β values. (a) 0 < β � 1, δβ = 0.2. (b) 1.2 � β � 2,
δβ = 0.2. (c) 2.6 � β � 5, δβ = 0.6. (d) 6.5 � β � 20, δβ = 4.5, and β = 100 (dot-dashed line). Insets: General trend, β = 0.5 (a), β = 1.5
(b), β = 3.5 (c), β = 12.5 and (dot-dashed line) β = 100 (d).

diminishing one but monotonicity does not hold anymore as
the shape parameter is growing up to infinity (3 � β → ∞).
The modulus oscillates slightly in amplitude with β ≈ 3 and
strongly with β → ∞, which follows naturally since the
function e−tβ tends to a sharp step, of width �t = 1 when
β → ∞, whose Fourier transform is a sinc(ω) function (see
Fig. 1).

C. Derivative of extended exponential: −β tβ−1e−tβ

Considering −φ′
K,β(t) in the temporal domain we see

that the value at t = 0 diverges toward infinity for β < 1 and
decreases monotonically to zero as t → ∞, since it is the
product of two monotonously decreasing functions. Letting
β = 1 the function starts at 1 when t = 0 and diminishes
monotonously too as it is a decreasing exponential. However
if β > 1 the function begins at zero and grows slowly till
a maximum, whereupon it tends, overexponentially, to zero
as the term e−tβ dominates when t → ∞. With increasing
β → ∞ the maximum of the parametrized −φ′

K,β curve
grows in magnitude to infinity and the peak half-height width

vanishes. This is because tβ−1 β→∞−→ 0+, ∀t < 1, and e−tβ β→∞−→
0+, ∀t > 1, with the maximum at t = 1 reaching the ∞ value.
It resembles, not coincidentally, a Dirac δ. Furthermore, we
should note that βtβ−1e−tβ , β > 1, as a parametric family
suffers a qualitative change of shape in the ascending slope.
While 1 < β < 2 the curve does not have inflection points
on this side but has one on the descending slope [39];4 the

4See Appendix B.

parametric family develops an inflexion point on the left side
starting at t = 0 for the limiting case β = 2 which drifts toward

t
β→∞−→ 1−. This characteristic plus the distributionlike manners

of the derivative for big shape parameters implies a change in
modulus comportment of its Fourier transform.

A look over the FT modulus of these functions,
parametrized by β and obtained numerically, shows functions
with a rounded steplike shape in log ω scale. All of them start
at the same value,

ψβ(0) =
∫ ∞

0
βtβ−1e−tβ dt = 1, ∀β > 0, (6)

and the “semiplateau” of the curves is width increasing. The
family appears as almost layered before and after the drop
of the step though with reverse order on each side of it.
Nevertheless the monotonic decreasing of the modulus, only
interrupted by the flattening effect at the limit of the frequency
range, does not hold anymore when β surpasses the value
where βtβ−1e−tβ has two inflection points. As β increases
beyond 2, β > 2, attenuated fluctuations in the modulus
function appear, at first as undulations, evolving to ripples until
they become real damped oscillations, but with the peculiarity
that their magnitude is smaller than in the case of Fourier
transform of e−tβ when β → ∞. Only the signal sampling
and FFT numerical precision preclude this evolution, with the
shape parameter, from being clearly depicted [see Fig. (2)].

We have found out, by changing the focus to φ′
K,β(t) from

φK,β(t) while studying their Fourier transforms, that it is
possible to obtain a family bounded in all ω < ωmax, with
a shared origin at ω = 0 and with a regular behavior that is
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easily parametrizable. Moreover, for the case 0 < β < 2 they
decrease as monotonic functions of ω, except for sampling
(border) effects at ωmax < ∞.

III. APPROXIMATION TO DERIVATIVE IN
FOURIER SPACE

A steplike behavior and the regularity of the parametric
family of Fourier transformed derivatives suggest the use of
a patchwork of step descending functions, selected also from
a family, to approximate each of the previous ones. Many
sets of functions could be candidates if only mathematical
requirements were imposed, but if physical meaning is a
must as well our efforts should be directed to the relaxations
commonly used in scientific literature. The most general of
them is the Havriliak-Negami (HN) relaxation [9,35,40], and
attempts have been made to link this relaxation in ω space
to the Kohlrausch (K) one in t space [41]. The bridge to do
this was the comparison of dielectric loss functions obtained
from each decaying (K or HN) [41,42]. It is assumed that
the functions involved admit a representation as a Laplace, or
Stieltjes, transform of a non-negative function we call density,
or distribution, of relaxation times, i.e.,

φK,β (t) =
∫ ∞

0
e−t/τ ρK,β (τ )dτ, 0 < β � 1,

or

ϕHN,αγ (ω) =
∫ ∞

0

ρHN,αγ (τ )

1 + iωτ
dτ, 0 < α, γ � 1,

and consequently the dielectric loss will be written as

−Im
(ε∗(ω) − ε∞

ε0 − ε∞

)
K,HN

=
∫ ∞

0

ωτ

1 + ω2τ 2
ρK,HN(τ )dτ.

Finally, comparing a loss function of the HN type, for fixed α

and γ , with that of the Kohlrausch type, the closest possible
in response to the former, a surface of error or deviations
in approximation is rendered. Moreover, a path of Kohlrausch
functions as β evolves from 0 to 1 is described in this landscape
as one of minimum gradient. It is not then an equivalence
among functions that is shown but rather a representation, or
mapping, of one family over the other. It allows one to switch
from ω space to t space quickly without lengthy calculations
but it is not free of uncertainty or error [43].

On the other hand it is possible to write χβ(ω) as a series
of powers of 1

1+(iω)β , i.e.,

χβ(ω) = (−i)iβ

ω1−β

∞∑
n=0

(−1)n

[1 + (iω)β]n+1

×
{

n∑
s=0

(
n

s

)
(−1)n−s �(βs + 1)

�(s + 1)

}
,

and the same is true for ψβ(ω) following Eq. (4) [15]; then it
is arguable that the above-mentioned mapping of Kohlrausch
functions over the Havriliak-Negami family is indeed a trun-
cation and roundup of the original function expressed in terms
of members of this family. So the next logical step to follow
is to use two functions of HN type in an extended way (i.e.,
α and γ not restricted to be smaller than 1). That construction

will be a sort of “osculating plane” to a one parameter “curve”
of Kohlrausch functions as β increases up to 1.

Being conscious of the inherent distortion the FFT is,
in relationship to the analytical FT, a fit of each function
ψβ(ω)—for regularity—to a “HN plane” will be done for
values of β belonging to the interval (0.02,0.98) [41]. It is clear,
due to periodicity of the FFT, that the approximation will fail
at high frequencies in the modulus and phase. Moreover, for
low β values an equal sampling and range of points in t space
will not be good enough to describe the slow pace decaying
of the Kohlrausch function, as it was for values of β nearer to
1. This loss of accuracy will be reflected in Fourier space by a
loss of energy in the spectrum and a major repercussion of the
smoothness at the border ωmax in blurring actual values of the
modulus. Nevertheless we show that this approximation gives
a good template at low frequencies of ω space to allow a correct
identification of stretched exponentials in whole t space. Such
reconstructions together with their errors are presented below.
In addition, gathering the HN parameters for all calculations
gives us functions of the variable β which allow us to
calculate intermediate points of the original grid (0.02,0.98).
Moreover some extension to interval 1 < β � 2 of this picture
is commented as exp(−tβ) is still the Laplace transform of a
positive density [26,27,32], i.e., ρK,β � 0,∀τ < ∞.

It should be noted, as a technical digression, that in parallel
to this scheme of changing from t space to ω space to study
relaxations other authors prefer to use the τ and t spaces
[4,9,13,31,32,41,42,44] (i.e., the relaxation time density and
the corresponding Laplace transform: the real time function).
From a formal point of view the one-sided Fourier transform
and the Laplace transform are both included in a more general
one: the Laplace-Fourier transform. Both are formally the same
if the variable used (ω or 1/τ ) in the exponential which consti-
tutes the kernel instead of a real one is a complex number. How-
ever it is true that specific analytical or numerical problems
can deter us from employing one or the other variant. As an
example, a closer look at the HN function shows the existence
of a simple formula for the density of relaxation times, i.e.,

τρHN(τ ) = 1

π

sin
[
γ arctan

( (τo/τ )αsinπα

1+(τo/τ )α cos πα

)]
[
1 + 2

(
τo

τ

)α
cos πα + (

τo

τ

)2α]γ /2 ;

nevertheless this expression is restricted to the use of parameter
values α � 1 and γ � 1. According to the limit α → 1 (HN
tends to CD), the function τρHN loses differentiability and
continuity at the maximum and a sharp cutoff of relaxation
times is imposed (τ � τo if α = 1). The situation is even worse
for CD relaxation as γ → 1 since the density ρHN(τ ) becomes
singular as a Dirac δ at τo. To our knowledge no alternative
or extension to this formula has been raised for the α > 1 and
γ > 1 cases. So, in the best scenario any approximation to
the squeezed exponential, exp(−tβ), with 1 < β � 2, using
HN-like functions should come from numerical analysis
only [45].

A. The dependence of HN plane with Kohlrausch shape
parameter

The function βtβ−1e−tβ is sampled from Tmin = 0.001 to
Tmax = 1000 at intervals of δt = 0.001, after which the array
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of numbers is transformed with a FFT algorithm (fftw3)
to a sequence of complex numbers and their conjugates,
starting at ω = 0 and ending at ωmax/2π = 500.000 5 at
intervals of δω/2π ≈ 0.001 000 001. As a numerical result
from a discrete Fourier summation, whose domain interval
is finite and constant, it should be noted that coefficients
are given rescaled to 1/Tmax, compared with the analytically
desired ones. Moreover an error is added because the limits of
integration in Eq. (3) are no longer 0 and ∞ but are changed
to Tmin and Tmax. This can be estimated by the incomplete
�(· · · , · · · ) function for null frequency. Nevertheless at the
first stage we proceed with an ad hoc normalization to use
regular sequences of fast Fourier transforms, with different
shape parameters β, as near as possible to theoretical ones
(i.e., at least starting at 1) [as deduced from Eq. (6)].

The result is the convolved function W̃T ∗ −φ̃′
K,β ≡

ψ̂β(ω) ≈ ψβ(ω), and a nonlinear adjustment to a couple of HN-
type relaxations is done. At this point we should mention that
the canonical form of the HN relaxation, 1

[1+(iω)α ]γ ≡ ϕαγ (ω), is
substituted with a frequency rescaled version, because there is
no reason to consider time scale parameters in both Kohlrausch
(τK = 1) and Havriliak-Negami (τHN) relaxations as equal.
This has indeed already been proven by other authors for a
one-term approximation (equivalence-of-loss), which stated
τK/τHN as a nonconstant function of β [41,43].

In short what we have is

ψβ(ω) ≈ ψ̂β(ω) � λϕα1γ1τ1 (ω) + (1 − λ)ϕα2γ2τ2 (ω)

= λ

[1 + (iωτ1)α1 ]γ1
+ 1 − λ

[1 + (iωτ2)α2 ]γ2
, |λ| � 1,

(7)

a “simple” seven-parameter nonlinear setting. Therefore some
previous spurious adjustments were carried out to narrow

TABLE I. Formulas used to adjust αiγi=1,2 data and their fitting
parameters. Corr. = correlation coefficient of nonlinear fit. β � 1.

Data Adjustment Constants

α1γ1 Ad1: mβ + d + exp(−Eβ + D) m = 1.090 375
d = −0.116 589
E = 6.491 91
D = 1.529 56

Corr. 0.996 980

α1γ1 Ad2: a + bβc + B exp[−C(β − β0)2] a = 0.361 2
b = 0.613 556
c = 1.777 14
B = 2.725 58
C = 19.989 3
β0 = 0.004 732 02

Corr. 0.987124

α1γ1 Ad3: a + bβc, 0.6 � β < 1 a = 0.360 23
b = 0.613 556
c = 1.777 14

Corr. 0.999 910

α2γ2 Ad: a + bβc a = 0.279 187
b = 0.717 851
c = 1.51813

Corr. 0.998 380

the space parameter, thus making the search of them more
simple and the dependence on β less noisy. The first one was
to consider |ψ̂β(ω)|2 �λ|ϕ(αγ τ )1 (ω)|2 + (1 − λ)|ϕ(αγ τ )2 (ω)|2.
The second was to take account of the cross term, though not
the angle between two vectors for a given frequency. At the
end a complete fit to the square modulus of ψ̂(ω) by means
of the expression λ2|ϕ1(ω)|2 + (1 − λ)2|ϕ2(ω)|2+2λ(1 −
λ)|ϕ1(ω)||ϕ2(ω)|cos{ ̂[λϕ1(1 − λ)ϕ2](ω)} was done. No
relevant dependency on the imaginary part of λ was found,
whereby at this final stage it was considered real (Im(λ) ≡ 0),
positive, and smaller than or equal to 1 (1 � λ ∈ R+); no
further adjustment to the phase equation of the system
[Eq. (7)] was performed. The parameters obtained from the
modulus equation were enough to fulfill the former with the
aid of a first-order correction to describe numerical drop to
zero at ωmax.

B. Numerical fitting to parameters: Dependence on β

Previously two fittings were proposed for αγ and τK/τHN

when only one HN function was under discussion. The
first was like αγ ≈ β1.23 and the second was of the
type log10(τHN/τK ) ≈ 2.6

√
(1 − β) exp(−3β) [41]. Both had

agreement with data and seemed flexible enough to be
employed as a starting point for our approximation. We define
the following group of parameters to be adjusted: α1γ1, α2γ2,
τ1τ2, τ1/τ2, α1, α2, and λ; with their fittings it is possible to
reconstruct any of the original seven as a simple function of
β. This effectively eliminates the ambiguity of using several
parameters since they are entirely dependent on the shape

TABLE II. Formulas used to adjust τ1τ2 and τ1/τ2 data and their
fitting parameters. Corr. = correlation coefficient of nonlinear fit.
β � 1.

Data Adjustment Constants

τ1τ2 Ad1: βd (1 − β)f sech[M(1 − β)g] d = −2.004 74
f = 0.095 523 1
g = 3.427 71

M = 18.693 6
Corr. 0.999 072

τ1τ2 Ad2: βd (1 − β)f exp[M(1 − β)g] d = 18.984 7
f = 0.041 709 8
g = 1.171 41

M = 30.297 8
Corr. 0.998792

τ1/τ2 Ad1: A[1−exp(−σβd )]
1+B exp[−M arctanh(2β−1)] A = 20.229 4

B = 0.495 551
M = 8.342 72
σ = 0.035 000 6
d = 2.038 46

Corr. 0.999 920

τ1/τ2 Ad2: exp[− exp(
∑i=4

i=0 aiβ
i)] a0 = 2.600 06

a1 = 2.894 85
a2 = −29.931 4
a3 = 43.875 5
a4 = −20.544 7

Corr. 0.999 509
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parameter. For the interval β ∈ (0.02,1.0] the points calculated
are at 0.x2,0.x5,0.x8, or 0.x + 0.1, with x = 0,1,2, . . . 9.
However for β ∈ (1.0,2.0] the points are sparser; we fit those
of form 1.x5 or 1.y with x = 0,1,2, . . . ,9 and y = 1,2, . . . ,9.
The functions fitting parameters in this second group are
different from those in the first one, and the original α1,2, γ1,2,
τ1,2, and λ are used directly instead of the mentioned ones.
It should be noted that the real HN behavior of approximants
ϕ(αγ τ )1 (ω) and ϕ(αγ τ )2 (ω), i.e., α1,2 � 1, γ1,2 � 1, is entirely
lost outside of interval β ∈ (0.3,1.0). The later is contained
in (0.2,1.0), beyond which curvature of βtβ−1e−tβ changes its
complex roots, denoted t

β
±, to real ones [39].5

Tables I, II, and III display fitting functions and their
parameter values for α1γ1, α2γ2, τ1τ2, τ1/τ2, α1, α2, and λ as
functions of β. The simplest expression comes first, though,
when appropriate, there are other alternatives in second place.
This is the case of the α1γ1 adjustment where three options
are given. The third one picks up the product behavior as
a + bβc for β ∈ [0.6,1.0]. This is the originally desired one,
which allows one to calculate an asymptote like mβ + d

when β ≈ 1, both curves are subtracted to data and the
remainder points are fitted to different exponential functions.
By combining the exponential functions with the extracted
ones we obtained the first and second fits of Table I for the
product α1γ1. Some discrepancies among them and the data
are clear when 0.02 � β � 0.45. An additional conformation

5See Appendix B.

is attained by computing the arithmetic mean of the first two
adjustments (see Fig. 3), and it deserves attention. The noise
of the smallest β values and its magnitude, and the change
in the trend of data from decreasing to increasing as β grows
toward 1, force us to employ at least two fittings in order
to describe accurately the minimum of the graph. So the
mean is a sort of rough weighted method which saves the
trend ∼O(βc) at the end of the interval and gives a good
representation of the extremal point without betraying very
much the rising of the curve at the β values closest to zero.
Duplicity of functions is given too for the cases τ1τ2, τ1/τ2, and
λ, nevertheless it is not so critical as in the former example;
instead it is an alternative formulation. They are not shown
in graphics; they are just recorded in Tables II and III. The
following two pictures represent the data and curves found:
α1γ1 in Fig. 3(a) and α2γ2 in Fig. 3(b). In Fig. (4), τ1τ2 and
τ1/τ2 are in the left panel and α1,2 and λ are in the right
panel.

The adjustment of parameters α1,2, γ1,2, τ1,2, and λ with 1 <

β � 2 are equally done. Nevertheless two warnings should be
given. First the approximants ϕ(αγ τ )1,2 (ω) are not of the HN type
anymore because α1 > 1 and γ1,2 > 1. However the functional
form is conserved in our approximations, hence the “HN-like”
designation throughout the text for ϕ(αγ τ )1,2 (ω), irrespective of
the β value while it be less than 2. The second warning is even
more important: as β → 2 the analytical Fourier transform of
the Kohlrausch function, χβ , evolves to zero with a dropping
of its modulus faster than in the stretched case (β � 1). As a
consequence the approach to ψβ(ω) explained here can only

TABLE III. Formulas used to adjust α1, α2, and λ data and their fitting parameters. Corr. = correlation coefficient
of nonlinear fit. β � 1.

Data Adjustment Constants

α1 Ad: exp[A + B(1 − β) exp(−M|β − β0|d )] A = −0.013 179 9
B = −1.452 68
M = 4.017 63
β0 = 0.188 585
d = 1.515 28

Corr. 0.998 905

α2 Ad: exp[A + B(1 − β) exp(−M|β − β0|d )] A = 0.005 901 01
B = −0.993 309
M = 7.789 28
β0 = 0.054 975 3
d = 2.071 24

Corr. 0.999 597

λ Ad1:
∑i=5

i=0 ai(1 − β)i a0 = 0.056 161 6
a1 = 2.198 4
a2 = −1.530 47
a3 = −12.525 7
a4 = 24.706 7
a5 = −12.610 2
Corr. 0.969 331

λ Ad2: exp[M(1 − β)]
∑i=3

i=0 ai(1 − β)i , 0.18 � β < 1 M = 0.017 908 4
a0 = 0.047 585 7
a1 = 2.670 3
a2 = −6.286 24
a3 = 4.398 9
Corr. 0.996 824
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FIG. 3. (Color online) (a) Graph of α1γ1 (left triangles) vs β < 1, two analytical fits (squares with dotted line and circles with dot-dashed
line) of it, and the arithmetic mean of the latter (solid line). (b) The values of α2γ2 (right triangles) are fitted to a more simple expression
(squares with dashed line). See Table I for those expressions.

describe roughly the bump (peak) of the function −φ′
K,β and

not the overexponential tail for t → ∞ at β > 1. Even so
we consider the results in Tables IV and V, together with
the graphs in Fig. 5, to be illustrative of the methodology
limitations.

IV. RECONSTRUCTION OF KOHLRAUSCH FUNCTION

At the present time our aim of obtaining a quick method
to identify a precise Kohlrausch relaxation in the frequency
space is reasonably fulfilled. Hence, a natural question arises,
how accurate is the proposed template in relation to the
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FIG. 4. (Color online) Two functions, τ1τ2 and τ1/τ2, of the frequency rescaling parameters in HN approximants are given in panel (a)
(circle and square dotted lines). The best fit to each one is depicted (diamonds with dot-dashed line and cross with solid line). (b) Parameters
α1, α2, and λ are plotted as functions of β (circles, diamonds, and stars, respectively). Two good adjustments to α1,2 are overimposed (small
triangles with solid line and small circles with dot-dashed curve). The best possibility to adjust λ covering all the abscissas’ interval (0,1) is
also given [character (c) with solid line]; observe that the noisy behavior at the beginning of same precludes a better adjustment. Results are
given in full detail in Tables II and III.
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TABLE IV. Fitting parameters and formulas for data α1,2 and γ1,2. Corr. = correlation coefficient of nonlinear fit.
Data at β = 1.05 are excluded from fitting, 1 < β � 2.

Data Adjustment Constants

α1 Ad: 1 + {a0(β − 1)0.5 + a1(β − 1)} exp(−M
√

β − 1) M = 2.893 66
a0 = −0.198 779
a1 = 1.765 27

Corr. 0.999 957

α2 Ad: A + {a0(β − 1)0.5 + a1(β − 1)} exp(−M
√

β − 1) A = 0.990 982
M = 4.277 24
a0 = 0.402 462
a1 = −1.376 56
Corr. 0.999 750

γ1 Ad: {A + B exp(Cβ)}{1 + D exp(−Eβd )} A = −0.088 719 2
B = 0.314 142
C = 1.469 7

Corr. 0.999 965

D = 0.668 158
E = 0.783 956
d = 8.801 31

Corr. 0.995 870

γ2 Ad: A exp[E(β + β0)2] A = 0.307 287
E = 0.207 048
β0 = 1.379 61
Corr. 0.999 991

real spectrum? The answer is better obtained in the time
domain; instead of a quadratic error measure between the two
functions involved (FFT and HN approximations) we proceed
to reconstruct the twofold approximant function and compare
it to the original Kohlrausch one.

First of all it is necessary to know the value at ω = 0 of
Fourier transform χβ(ω) for each β, because it is the only
one not afforded by the closure relation (4). We could proceed
tabulating numerical values of χ̂β (0) in the same manner we did

TABLE V. Fitting parameters and formulas for data τ1,2 and λ.
Corr. = correlation coefficient of nonlinear fit. Data at β = 1.05 are
excluded from fitting, 1 < β � 2.

Data Adjustment Constants

τ1 Ad: A + B exp[−E(β + β0)] A = 0.061 324 6
B = 5.167 7
E = 1.723 5
β0 = 0.087 394 8

Corr. 0.999 996

τ2 Ad: A + B exp[−E(β + β0)] A = −0.038 793 3
B = 4.198 96
E = 1.136 26
β0 = 0.284 232
Corr. 0.999 925

λ Ad: exp(−M
√

β − 1)
∑i=4

i=0 bi(β − 1)i M = 3.633 01
b0 = −0.249 233
b1 = 8.963 97
b2 = −6.725 24
b3 = 10.318 2
b4 = −3.426 05

Corr. 0.999 862

for ψ̂β(0). This last calculation was necessary to correct the fact
that the FFT as a discrete version of the Fourier integral gives a
value slightly superior to the integral ψ̂β(0) itself. Moreover in
numerical calculations nonbounded values must be avoided,
so both the FFT and Fourier integrals are given in a poorer
version in which the integration (summation) lower limit is
Tmin instead of zero. This means the output of FFT obtained
is different than expected and a record of this disagreement is
needed; we called it tab.ψ̂β(0).

Nevertheless while reconstructing χ̂β(ω), mostly for small
β values, we observed a loss of information due to all the
approximations made on ψ̂β(ω); as a consequence we opted
for a mixed approach. On one hand is an analytical expression
to degraded χ̂β(0), and on the other is the ratio of tab.ψ̂β (0)
to degraded ψ̂β(0). The product will deliver an estimation to
the desired χβ(0):

χβ(0) ≈ χ̂β(0) � 1

β

�
(

1
β
,T

β
min

) − �
(

1
β
,T

β
max

)
�

(
1,T

β
min

) − �
(
1,T

β
max

) tab.ψ̂β(0),

with �(· · · , · · · ) being the upper incomplete Gamma function.
In Fig. 6 two reconstructions for β = 0.15 and β = 0.85

are shown. Each one employs the approximant obtained from
Eq. (7) rescaled with tab.ψ̂β (0) in the closure relation (Eq. (4))
to estimate χ̂β(ω). An algorithm for inverse FFT is used and
an oscillating reconstructed function is achieved that follows
closely the original Kohlrausch function for t � 10. After that
moment both functions differ and the effects of a quicker decay
of the stretched exponential over the twofold HN approximant
function are evident. However a good agreement over the main
part of the function is obtained (99.9% for β = 0.85).
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FIG. 5. (Color online) The seven parameters for HN approximants with 1 < β � 2 are represented. (a) α1 and α2 are shown with big
circles. (b) Using squares, γ1 and γ2 are plotted. (c) By means of diamonds and left triangles, τ1, τ2, and λ are shown. In each panel smaller
symbols joined by lines adjust every HN-like parameter. The legends in the figure make clear the correspondence among data and symbols;
the formulas used to obtain the fits are written in Tables IV and V.

A further correction to this HN-like function is made when
cutoff effects are introduced in the phase of such an expression.
The phase of the numerical Fourier transform for −φ′

K,β (t)
goes to zero when the frequency approaches the sampling
frequency (i.e., ω → ωmax); the phase of λϕα1γ1τ1 (ω) + (1 −
λ)ϕα2γ2τ2 (ω) does not. It attains asymptotically a nonzero
constant value as the frequency goes to infinity, and of

course is nearer to it than to zero at ωmax. As a consequence
when inverted by fast Fourier algorithm it oscillates all the
time, being the effect more visible near t ≈ 0. Then some
kind of drop off must be imposed to mimic the numerical
behavior; a good choice deduced from FFT phase graphics is a
linear decaying with frequency. The phase of the approximant
described in Eq. (7), a function of ω, will be substituted by itself
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FIG. 6. (Color online) Solid line: Kohlrausch function. Squares: Twofold HN function Fourier inverted. Circles with dot-dashed line: Phase
cutoff modification to previous estimator. Dotted line: Modulus of HN approximant and Kohlrausch FFT phase.
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times (1 − ω
ωmax

). The results depicted in Fig. 6 show the same
trend as its predecessor but with less oscillations. Still errors
and discrepancies are present surely due to the lack of accuracy
in Eq. (7), because when low frequencies are involved the
approximant underestimates the FFT modulus. The difference
is not high, but it is enough to miss long-range information in
the time domain enclosed in the phase and modulus at such
frequencies (usually the first ten or so). To illustrate this point
we transformed the modulus of χβ(ω) calculated by means of
Eq. (7) and the phase obtained from FFT of φK,β(t) to get a
third reconstruction (dotted line in Fig. 6) which continues the
trend and makes a better approximation at long times to the
original stretched exponential. The change in phase obtained
from this swapping operation is minimal and mostly restricted
to low frequencies (again less than 15 sampling points); hence
it is not risky to assume the need for a third quick-fading
approximant of type ϕα3γ3τ3 (ω) to account for the mismatch
between the approximant and ψ̂β(ω) at ω � 0.

A smooth rounding of the modulus profile at high frequen-
cies would be convenient in diminishing fluctuations at t ≈ 0.
This modification and the proposed adding of ϕα3γ3τ3 (ω) to
the HN approximant are two possible extensions of these
calculations for future works; nevertheless they are beyond
the scope of the present paper.

V. COMPARISON WITH OTHER APPROACHES
AND APPLICATIONS

A. Theoretical and numerical aspects

Once we performed the reconstruction of the Kohlrausch
function from our approximation, and after considering the
errors shown in the t space (oscillations and long tail
deviations), we presented here a comparison with available
mechanisms proposed in the literature [19,37,41,43,46]. This
allowed us to assess which computational gap would fulfill
further approximants of the HN type in an infinite expansion,
which would ultimately be a representation of the Fourier
transform of the Kohlrausch function. In addition, it would
rate its efficiency while applied to the task of identifying one
or several relaxations by discriminating β’s in ω space.

Let us start with two arbitrary approximations to χβ(ω),
i.e., χ

(a)
β (ω) and χ

(b)
β (ω), we shall calculate the relative error

of their modules, at frequency ωi , in the usual way: |1 −
|χ (b)

β (ωi)/χ
(a)
β (ωi)||. This function is as worthy as ||χ (a)

β (ωi)| −
|χ (b)

β (ωi)||, the difference of modules, in evaluating the error
of using one in place of the other. It has the advantage of
weighting χ

(b)
β by χ

(a)
β , choosing carefully the order (a,b),

and so yielding comparisons in the same scale of results
irrespective of their magnitude, which is a useful way of
presenting several segments of the spectrum and focusing on
the behavior and coevolution of both functions.

Equally it is useful to define the average relative error in an
interval (ωm,ωx) as

〈
εrel

(
χ

(a)
β ,χ

(b)
β ,ωm,ωx

)〉 ≡ 1

ωx − ωm

∫ ωx

ωm

|1 −
∣∣χ (b)

β (ω)
∣∣∣∣χ (a)

β (ω)
∣∣ |dω.

As surrogates of χβ(ω) in the interval ω/2π ∈[0,500.0005),
we employed χM

β (ω), calculated with the package MATHEMAT-

ICA [46], χW
β (ω), computed with the C library described in

Ref. [19], and χFFT
β (ω) ≡ χ̂β(ω), the FFT of e−tβ in the interval

t ∈ [0.001,1000] already described in this text [37]. Moreover
by means of the formulas explained in Ref. [41] the substitute
ψAAC

β (ω) is obtained and then we arrive at χAAC
β (ω), and finally

χ2HN
β (ω) is the approximation proposed in this work.

The spectrum is exhibited divided in four zones of fre-
quencies: ω/2π ∈ (a) [0,1], (b) (1,10], (c) (10,100], and
(d) (100,500]; and the functions χ

(∗)
β are calculated with a

sampling accuracy of δω/2π ≈ 0.001 000 001. Except for the
case of χM

β in which four different increments have been used,
namely, δω/2π , 10δω/2π , 100δω/2π , and 1000δω/2π for
intervals (a), (b), (c), and (d), respectively.

As MATHEMATICA comprises several well-tested routines, it
is assumed that χM

β is the best approximation to χβ obtained
numerically with arbitrary precision. It serves to test the
accuracy of the library in Ref. [19] which yields numbers
in the float format instead of the more common format,
double ; so after computing the relative error of χM

β vs χW
β

the latter will be established as the numerical reference to
compare with. The main tests are χW

β vs χAAC
β and χW

β vs
χ2HN

β , the relative error in second case being less, in general,
than in the first one. A comparison between χW

β and χFFT
β is

shown as well; because both came from the same real function
in the t space the distortion introduced by the convolution with
a finite window is set and measured. Finally χFFT

β and χ2HN
β

are compared to reveal how much of the convolution moves us
away from the ideal twofold HN approximation to χβ .

In Fig. 7, χ2HN
β has an average relative error smaller in mag-

nitude than that of χAAC
β with respect to χW

β for every β (0.1 �
β � 1) inside the intervals (b), (c), and (d) mentioned above.
Also observed is a good implicit filtering of the convolution
effect and an adaptation to χW

β from χ2HN
β and χAAC

β rather than
following closely χFFT

β even though the smearing is present
everywhere in ω and β. This situation is obviously worse
when β → 0+ and better when β → 1−. Naturally we can try
to give up the fitting to convolved data and proceed only with
numerical ψ

M,W
β , but convolution should be added anyway

later while analyzing a finite temporal series in Fourier space.
Likewise the more complex approximation, χ2HN

β , sur-
passes its predecessor, χAAC

β , in performance in interval (a)
for almost every β. The trend seems to be broken in the
neighborhood of value β ≈ 0.60 ± 0.05, where the errors
are similar and χAAC

β overcomes the other function. Before
considering this as a forbidden region, the sources of error of
the twofold HN function as an approximant to ψβ should
be taken into account. It is already commented the error
inherent to the nonlinear fitting of data, and the limitations
of the functional form used, to describe the few dozen
low frequencies which produce large-base oscillations and
misshaping of tails in t space (see Fig. 6). Additionally another
one has been included. We have employed mathematical
expressions to adjust the seven parameters {α1,2,γ1,2,τ1,2,λ}
as β changes, and those functions were included in the code
to generate χ2HN

β (see Tables I, II, and III). By repeating
the calculation of the average relative error of χW

β vs χ2HN
β

in the interval (a), ω/2π ∈[0,1], for the original parameters
{α1,2,γ1,2,τ1,2,λ} at β = 0.6 the value 〈εrel〉 = 2.57 × 10−3
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FIG. 7. (Color online) Average relative errors 〈εrel(χ
(A)
β ,χ

(B)
β ,ωm,ωx)〉 of functions χ

(A)
β vs χ

(B)
β , as defined in the text, over frequency

intervals: ω/2π ∈ (a) [0,1], (b) (1,10], (c) (10,100], and (d) (100,500]. Tags (A) and (B) stand for M (MATHEMATICA, Ref. [46]), W (C library,
Ref. [19]), FFT (Ref. [37]), AAC (1HN function as in Ref. [41]), and 2HN [as from Eqs. (7) and (4)].

is obtained. (The previous was 〈εrel〉 = 1.1 × 10−2.) And the
average relative error for χW

β vs χAAC
β at the same β value

is 〈εrel〉 = 8.26 × 10−3. Again we get a better result for 2HN
when comparing to AAC.

One question is raised after this recalculation: Why is the
relative error of χ2HN

β overtaken by that of χAAC
β specifically in

the neighborhood of β ≈ 0.60? A close look at the functions
generating τ1τ2 and τ1/τ2 shows a maximum around β ≈ 0.60
and the end of its definition at β ≈ 0.98 for the first function.
And the second one suffers a steep jump in the transition
from β = 0.98 to 1.00 as a consequence of numerical errors
due to the mathematical degeneracy of formula (7) near β =
1.00—the Debye relaxation (see Table II and Fig. 4). As we
work out τ1 and τ2 from them the propensity for numerical
errors in these two intervals of β is greater than in others (β ∈
{[0.55,0.65],[0.98,1.00]}). To correct this it is always possible
to use the original values of parameters {α1,2,γ1,2,τ1,2,λ} and
interpolate them for the intermediate values of β. Nevertheless
the unifying character of the formulas for τ1 and τ2 along
the interval β ∈ (0.02,1.00] is lost. We can recover it with
a couple of new adjustments provided we are not worried
about increasing the number of parameters (constants) of such
fittings. For example,

τ1(β) ≈ 2 × 10−5 + A exp[−M(1 − β)d ]/(1 + β),

with A = 1.404 55, M = 25.8515, and d = 4.871 63 (corr.
0.999 782), and

τ2(β) ≈ 1 + A(1 − β)1.5 exp(−Mβ2)

+Bβ1.5(1 − β)sech(N |βo − β|),

with A = 35.7913, B = 18.0146, M = 26.7105, N =
3.990 81, and βo = 0.306 44 (corr. 0.999 337).

B. Application to experimental data

A main concern here is not only the use of this approx-
imation in fitting experimental data but also the nature of
the relaxation. The Kohlrausch class can be expanded to a
more general type as quoted in Ref. [20]. Because they use an
extended function comprising Kohlrausch and CD relaxation
in glass-forming systems, the direct use of our expansion is
obstructed at the present time. One obstacle is the loss of
signal in convoluted data; we use χ̂β(ω) instead of χβ(ω), in an
attempt to compare with experimental ones which do not suffer
this loss. The other handicap is more important because it is not
a simple error, or uncertainty; instead it is the use of a different
function with a new parameter besides the already known
β. That forces a new functional expression of parameters
{α1,2,γ1,2,τ1,2,λ} in the function of β1 and β2. Nevertheless
we can answer two pivotal questions: whether the twofold HN
is applicable here and how far in frequencies (low and high)
this nonlinear regression can describe experimental data.

The relaxation proposed by Kahlau et al. [20] shows in the
temporal domain a first derivative which is formally similar
to that of a pure Kohlrausch function. Such a step response
function is applied to mono- and bicomponent mixtures of
polymers in a certain range of frequencies depending on
substance and temperature. Specifically the data of propylene
glycol (PG) and 2-picoline (5%) in tristyrene (Pic-tSty) as
shown in Figs. 3(a), 5, and 6 in Ref. [20] are used by
those authors and by us. Once again by using the procedure
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FIG. 8. (Color online) Dielectric relaxation of propylene glycol
at different temperatures. Squares: Experimental data from Ref. [20].
Solid lines: Fitting to a twofold HN-like function.

of adjusting with two HN approximants the goal of the
experiments is fulfilled, although this time with different
parameters {α1,2,γ1,2,τ1,2,λ} as the objective function has
changed and the data are not subject to convolution spoiling.
The fittings of twofold HN functions to PG data exhibit very
good agreement in the range of temperatures from 173K to
231K as we can see in Fig. 8. The Pic-tSty experiments (see
Fig. 9) are well described too by these two (HN) functions yet
we introduced a new parameter as a consequence of lack of
normalization. This forces us to loosen restrictions over λ; so
we first calculate a constant to describe the diminishing heights
for temperatures 225K, 230K, 235K, and 240K and after that
the nonlinear regression is made with the constant obtained
times a twofold HN approximant with condition λ � 1.

For both mixtures, mono- and bicomponents, and each
temperature in the intervals of frequencies shown in Figs. 8
and 9, the agreement is really good. Only in the borders of
the corresponding interval do data (crosses) and adjustments
(lines) start to move away from each other. This is not a
limitation of the mathematical expression used, instead it is the
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FIG. 9. (Color online) Dielectric relaxation of 2-picoline (5%) in
tristyrene at different temperatures. Stars: Experimental data from
Ref. [20]. Solid lines: Fitting to a twofold HN-like function.

trace of a different physical phenomenology (as, for example,
the appearance of an excess wing in the high-frequency side
of the interval considered).

It proves that expressions of the twofold HN-type are
flexible enough to take into account dielectric relaxations of
polymers subjected to a Kohlrausch-CD law (K-CD). Besides
with some additional work of same type set out here, this
family will serve to discriminate values of parameters β1 and
β2 belonging to the K-CD step response function. Likewise
it will let us switch between t space and ω space, although
some additional, and nontrivial, numerical or theoretical
calculations must be arranged to account for the convolution
(deconvolution) with a finite time window.

VI. CONCLUSIONS

We qualitatively analyzed the extended exponential
(stretched and squeezed), e−tβ , and its derivative in frequency
space for a wide range of shape parameters (0 < β → ∞).
The advantages and convenience of employing the Fourier
transform of the derivative over the transform of the function
itself, based on regularity and magnitude of modulus oscil-
lations, are discussed. A well-known algebraic relationship
between them is highlighted, releasing us from a transform
other than the one of the derivative. An approximation to the
latter is made by adding, in the complex plane, two functions
of the HN type. The parameters of both the approximants
(HN-like functions) are depicted versus the shape parameter;
mathematical expressions of them as functions of β are
deduced and commented upon. The same procedure beyond
the Kohlrausch function (0 < β < 1) is repeated, and equiv-
alent graphs and adjustments are drawn too for the interval
1 < β � 2. Expected and observed limitations of this range of
extension are briefly pointed out.

Reconstruction in the t domain of twofold HN approxima-
tions were carried out for two extreme examples, β = 0.15
and β = 0.85; their errors relative to the original stretched
exponentials are shown. Suggestions for the improvement of
this approximant with another HN-like term are given. They
are based on reconstructed function behavior, while modifica-
tions in phase were added to twofold HN functions, and on
the discrepancies at low frequency between approximant and
primal FFT data.

Moreover numerical comparisons show that an expansion
in HN-like functions is a promising way to describe complex
relaxations in Fourier space. In this sense excellent agreement
is found between experimental data and their fittings using
twofold HN approximants.

In the end we obtained a method to switch from the t

domain to the ω domain that is quicker than an exhaustive nu-
merical calculation. Though spoiled with convolution effects,
it endows us with a template, simple and efficient, to identify
spectral decay as coming from a precise step function, e−tβ ,
with fixed β.

ACKNOWLEDGMENTS

We would like to thank the authors of Ref. [20] (R. Kahlau
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APPENDIX A

Usually Kohlrausch functions are defined with two param-
eters instead of one. The shape parameter β and the time
scale factor τK are combined to give the form φβ,τK

(t)=
exp[−(t/τK )β], which is most commonly found in literature
that we used, i.e., φK,β(t). However to calculate one sided-
Fourier transform of the former the knowledge of the latter is
quite enough to describe it, if frequency domain is rescaled
with τK . This is because

Li

{
φβ,τK

}
(ω) ≡

∫ ∞

0
e−(t/τK )β e−iωtdt

= τK

∫ ∞

0
e−uβ

e−iωτKudu ≡ τKLi{φK,β}(ωτK ),

with u = t
τK

. And equally, the Fourier transform of the
derivative is expressed by the aid of Li{φ′

K,β} as

Li

{
d

dt
φβ,τK

}
(ω) ≡ −β

τK

∫ ∞

0

(
t

τK

)β−1

e−(t/τK )β e−iωtdt

= −β

∫ ∞

0
uβ−1e−uβ

e−iωτKudu

= Li

{
d

du
φK,β

}
(ωτK ).

APPENDIX B

We have
d

dt

(
βtβ−1e−tβ

) = βtβ−2e−tβ {(β − 1) − βtβ},

giving a maximum of −φ′
K,β (t) at t∗ = (1 − 1/β)1/β β→∞−→ 1−,

for β > 1. Also the derivative function, d
dt

− φ′
K,β(t), has zero

value at t = 0 if β > 2, but this implies a zero in the second
derivative by the Rolle’s theorem, i.e., an inflection point in
the interval (0,t∗) ⊆ (0,1). On the other hand(

βtβ−1e−tβ
)′′ = βtβ−3e−tβ {(β − 1)(β − 2)

− 3β(β − 1)tβ + β2t2β} = 0,

if any of three members is zero and β �= 1. If 1 < β < 2 the
first term is always positive, so the second term, in the interval
t ∈ (0,∞), and only when t → ∞, is the product tβ−3e−tβ →
0+. Therefore the inflection points will be given by the zeros
of a second-order polynomial in tβ . The roots are

t
β
± = 1

2β
[3(β − 1) ±

√
9(β − 1)2 − 4(β − 1)(β − 2)],

i.e., one positive and one negative. The latter is discarded
because t � 0. Only the positive one remains, which with a
trivial calculation is identified as greater than t∗ or recognized
as such as a consequence of Rolle’s theorem, given that d

dt
−

φ′
K,β(t) = 0 at t = t∗ and t → ∞. As a consequence there is

not an inflection point inside the interval (0,t∗) while 1 < β <

2. In short, the root minus of {· · · }, i.e., t
β
−, crossing from the

negative part of the real line, (1 < β < 2), to the positive side,
(β > 2), marks at β = 2 the occurrence of an inflexion point
to the left of maximum t∗ for the function −φ′

K,β(t).
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