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Abstract. The groups of local cohomology with supports in the non-free locus of a module
are used in order to obtain three classifications and one characterization of four classes of
modules.
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1 Introduction and Preliminaries

Let R be a Noetherian ring and let M be a finitely generated R-module. As is
well known (see [5, (11.1.1)]), the set of points p € Spec R such that M, is a free
Rp-module is an open subset in the Zariski topology. Hence, its complement C' is
a closed subset, called the non-free locus of M, whose corresponding radical ideal
(cf. [1, II, §4.3, Proposition 11(iii)]) is denoted by a = a(M) = J(C') throughout the
paper.

Proposition 1.1. Let R be a Noetherian ring and let F 5 Fy— M — 0 be a
finite free presentation of the R-module M. If rank ¢ = r and rank F; = n, then
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the ideal a(M) coincides with the radical of (n — r)-th Fitting invariant of M; i.e.,
a(M) =rad I.(p).

Proof. As a is a radical ideal, we only need to prove that V(a) = V(I.(¢)), or
conversely, that a Z p if and only if I,.(p) € p for every p € SpecR. If p does
not contain a, then M, is a free Ry-module and hence I,.(¢), = R, (for example,
see [2, Proposition 1.4.9]); therefore I,.(¢) € p. The converse also follows from the
previous reference. |

Below, we use the ideal a in order to obtain classifications of two classes of
modules and a characterization of k-th syzygies. More precisely, in Section 2, a
reflexive finitely generated module M over a Noetherian local domain whose dual
module is of projective dimension one is shown to be completely determined by
H2(M). Similarly, in Section 3, we obtain a classification of the ideal modules (in
the sense of [7, Proposition 5.1]) over a regular local ring by means of H!(M). As
a consequence of such a result (see Corollary 3.2), from a decomposition H, (M) =
@::1 R/a; for certain ideals aq,...,a,, we deduce that M is stably equivalent to
@._, a;,. By applying these results and from the existence of a dualizing functor,
in Section 4, we also obtain a classification of the torsion-free finitely generated and
non-free modules of projective dimension one over a regular local ring.

Finally, in Section 5, we obtain a characterization of k-th syzygies within the
class of reflexive finitely generated R-modules over a regular local ring by the van-
ishing of the groups Hi(M) for i =0,...,k — 1. To a certain extent, this result can
be considered as a generalization of the characterization of the vector bundles on
the punctured spectrum, which are k-th syzygies (see [4, Lemma 6.5]).

2 Reflexive Modules with Dual of Projective Dimension One

Lemma 2.1. If R is a Cohen-Macaulay ring, then H;(R) = 0 for every ideal q
with height q > 2.

Proof. By virtue of the hypothesis, we know that depth R, = dim R, for every
p € Spec R (see [2, Theorem 2.1.3]). Therefore, depth, R = min ey (q) depth R, =
min yey(q) dim Ry > 2, and we can conclude by simply applying the cohomological
interpretation of depth. O

Theorem 2.2. Let (R,m) be a regular local ring of dimension d > 3. Then
every reflexive finitely generated R-module M with proj dim MV = 1 is completely
determined by H2(M).

Proof. Let
0—F S5 F—M -0 (1)

be a minimal free resolution of MY. As M is reflexive, dualizing (1), we obtain the
exact sequence

0—M— Fy Y= FY — Ext'(MY,R) — 0, (2)
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which breaks into two short exact sequences

0 - ImyY — FY — Ext'(MY,R) — 0, (3)
0— M — Fy —Imp” — 0. (4)

First, we prove that Ext' (MY, R) is isomorphic to H2(M). Owing to reflexivity,
M and MY have the same non-free locus; hence support Ext' (MY, R) C V(a), and
accordingly, HO(Ext' (MY, R)) = Ext'(MY, R). Moreover, as Im¢" and F) are
torsion-free modules, both H?(Im ¢¥) and H?(F}) vanish, and taking cohomology
with supports in V(a) in (3), by virtue of Lemma 2.1, we obtain Ext'(M", R) =
H!(Im V). Similarly, by taking cohomology with supports in V(a) in (4), we ob-
tain an isomorphism H}(Im ") = H2(M). Hence, Ext'(MY, R) = H2(M), and
consequently, M is a second syzygy module of HZ(M). In order to conclude, we
only need to prove that the minimality of the resolution (1) implies that of (2). In
fact, if a linear form wy € Fy exists such that ¢¥(wg) ¢ mFyY (cf. [2, Proposition
1.3.1]), then by Nakayama’s lemma, ¢V (wg) belongs to a basis of F}' and hence
there exists an element x; € Fy such that ¢Y(wo)(z1) = wo(p(z1)) = 1. Hence,
Imp ¢ mFj and (1) is not minimal. O

3 Ideal Modules

Theorem 3.1. Let M be an ideal module over a regular Noetherian local ring
(R,m) of dimension d > 2, and let r(M) be the greatest rank of a free direct
summand in M. Then M is completely determined by r(M) and HL(M).

Proof. The module M embeds into its bidual and the quotient T'= MYV /M is a
torsion module. First of all, we prove that H}(M) = T. For every prime ideal p of
R with heightp < 1, M, is a free Ry-module as R is regular and M is torsionless.
Therefore, M, = M"Y and accordingly p ¢ V(a); hence height a > 2. Since M is
free, by virtue of Lemma 2.1, we conclude that H}(MYV) = 0. This fact proves our
claim by simply taking cohomology with supports in a in the sequence 0 — M —
MYV — T — 0, and recalling that H)(M) = HY(MVV) = 0 as M and MV are
torsionless, and HY(T') = T as the support of T is contained in V (a).

If M and M’ are two isomorphic ideal modules, then T and T" = M"YV /M’ are
also isomorphic. Moreover, from the very definition of r(M), it follows that there
exist two submodules F, M C M such that F is free of rank 7(M) and M = F& M.
Hence, we only need to prove that if M and M’ are two ideal modules such that
r(M) =r(M') and T = T', then M = M'. Let m: MYV — T = M"YV /M (resp.,
7' M"YV — T' = M"YV /M') be the quotient map. As MYV and M’V are free R-
modules, every isomorphism ¢: T — T" induces a homomorphism ®: MY — M'VV
making the following diagram commutative:

MY T -0

e Le

MN\/ W_'>T/ =0
We claim M C n_tMVV (resp., M’ C mM'VV), otherwise, every element Z in M not
belonging to mM Y generates a submodule RZ, which is a direct summand in M



4 A. Marcelo, J. Munoz Masqué, C. Rodriguez Mielgo

by Nakayama’s lemma, thus contradicting the definition of r(A/). Hence, rank MV
= dim g/ (T/mT), and similarly for the rank of M'"VY. Accordingly, ® is an iso-
morphism that induces an isomorphism from M = ker w onto M’ = ker 7’. O

Corollary 3.2. With the same hypotheses as in Theorem 3.1, assume a decom-
position HY (M) = @;_, R/a; holds for certain ideals ai,...,a, in R. Then there
exists a free module F such that M = F & (P;_, a;).

Proof. Let M = F @ M be as in the proof of the previous theorem. As R is a
unique factorization domain by virtue of our assumption, and each a) is a reflexive
R-module of rank 1 (cf. [6, Corollary 1.2, Proposition 1.9]), we conclude af = R;
hence (@::1 ai)vv & R". Moreover, from the first part of the proof of Theorem
3.1, we know that T = @._, R/a;, and proceeding as in the second part of that
proof, we obtain M = @._, a;. O

Example 3.3. Let s, t be two variables over the field k, and let A = k[s*, s°t, st3, 4]
be the k-algebra, which is a classical example of a non-Cohen-Macaulay ring. We
also set R = k[s*,#*] and m = (s,#*)- R. The inclusion of R into A converts A into
an R-module generated by 1, s%¢, st3, s?t?, and we have A = s>t>m @ F, where F
is the R-module generated by 1,s%t,st>. As m"V = Homg(Homg(m, R)) = R, we
readily conclude that A is an ideal R-module and, in this case, we have r(A) = 3
and H}(A) = k.

4 Torsion-free Modules of Projective Dimension One

Let R be a Noetherian local domain and let F —— M be a minimal epimorphism
of a torsion-free finitely generated and non-free R-module M, where F is a free
R-module, which is completely determined by M up to an isomorphism. Dualizing
the short exact sequence

0—-N-SF- T M—o0, (5)

7,l_\/

we obtain 0 — MY == FY 2 NV. The ‘codual module’ of M is defined to be
the R-module cd M = Im ", which is also a torsion-free finitely generated and
non-free R-module, as follows from the following exact sequence by virtue of the
assumptions on M:

\2
T

0 MY "L FY 2L cdM — 0. (6)
Proposition 4.1. Let R be a Noetherian local domain and let M be a torsion-free
finitely generated and non-free R-module. We have:
(i) ed (cd M) = M.
(ii) a(M) = a(cd M).

Proof. (i) Dualizing (6), we obtain 0 — (cd M) ¥— F Z— MYV. From this
sequence and (5), taking the natural inclusion M C M"YV into account, we obtain
an injection N C (cdM)Y. As N and (cd M)V have the same rank (equal to
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rank F' — rank M), there exists r € R such that r - (cd M)V C N, and 7 must be
invertible because M is torsion-free.

(i) If (cd M), is a free Ry-module, then (MVY), (and hence M,) is also free, as
follows from (6). Hence, a(M) C a(cd M), and we can conclude by virtue of (i). O

Remark 4.2. More formally, we can state that ‘taking the codual module’ is a
dualizing functor in the sense of [3, §21.1].

Proposition 4.3. Let R be a regular Noetherian local domain of dimension
d > 2. Then every torsion-free finitely generated non-free R-module M of pro-
jective dimension one is completely determined by r(cd M) and H}(cd M).

Proof. By virtue of Theorem 3.1, we only need to prove that ‘taking the codual
module’ is an equivalence between the category of torsion-free finitely generated
non-free R-modules of projective dimension one and that of ideal torsion-free finitely
generated non-free R-modules. Let 0 — F} 5 Fy = M — 0 be a minimal free
resolution of M. From [7, Proposition 5.1(e)], we know that cd M = Im¢" is an
ideal module. Conversely, if M is an ideal torsion-free finitely generated non-free
R-module, then again from the reference above, it follows that cd M is of projective
dimension one. O

5 Reflexive Modules over a Regular Ring Which Are k-th Syzygies

Theorem 5.1. Let R be a regular Noetherian local ring. A reflexive finitely gener-
ated R-module M is a k-th syzygy if and only if H(M) = 0 for everyi =0, ..., k—1.
Proof. Let M be a reflexive finitely generated R-module. Because of reflexivity

(e.g., see [2, 1.4.19(c)]), we can assume k > 2. Let

0—-F23 22 2k 2 - MY =0 (7)

be a minimal free resolution of MV. If M is a k-th syzygy, then by dualizing (7),
since M is reflexive, we obtain an exact sequence (see the proof of [4, Lemma 5.1])

0= M—Fy 2 py 25 2 py %2 py N0 (8)

with N = coker ¢)_,, which breaks into the following k short exact sequences:

So: 0—=M—F) —-Impy — 0,
Si: 0—=Imep, | —F >Imp) -0 (i=1,...,k—2),
Sp—1: 0—=Imy! , > FY, —-N—=0.

Let p € Spec R be a prime ideal with heightp < k. As M is a k-th syzygy, it
satisfies Serre’s Sy condition (e.g., see [4, Theorem 3.8(b)]), and accordingly, we
have depth M > heightp. From the Auslander-Buchsbaum formula [2, Theorem
1.3.3], we thus conclude that proj dim M, = 0, or in other words, M, is a free
Ry,-module. Therefore, p € V(a) implies heightp > k + 1, so that heighta > k+ 1
and hence d = dim R > k + 1. Recalling the cohomological interpretation of depth,
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from the sequence Sy above, we obtain HY ' (Im oY) = HE(M) forp=1,...,d—1,
and similarly, from S; for i = 1,...,k—2, we have HY '(Im oY) = H?(Im Y _,) for
p=1,...,d—1. In particular, for every p=1,...,k — 1, we have

HE(M) = H ' (Im ) = HE 2 (ImpY) = - - -
= Hf_J(Imgo}/ﬂ) >~ HS(Imgp;,/_l).

Moreover, we have HO(M) = H)(Impy) = -+ = H(¢)_,) = 0 as all these modules
are torsion-free. Hence, Hy (M) =0 for p=0,...,k — 1, and we can conclude the
first part of the proof.

Conversely, assume H{(M) = 0 for i = 0,...,k — 1. Again by virtue of [4,
Theorem 3.8], in order to prove that M is a k-th syzygy, we only need to state
that M satisfies Serre’s Sy condition. Given p € Spec R, we are led to distinguish
two cases: If M, is a free Ry,-module, then depth M, = depth R, and the S
condition certainly holds. If M, is not free as an R,-module, then p € V(a) and we
have depth M, > depth, M = min ¢y (q) depth M, > k, so that M satisfies the Sy
condition again. The theorem is thus established. O

Corollary 5.2. With the same assumptions as in Theorem 5.1, the module M
satisfies the Sj condition if and only if depth, M > k.

Remark 5.3. If M is a k-th syzygy strictly, i.e., if M is a k-th syzygy but not a
(k + 1)-th syzygy, then the torsion submodule T' of the module N in (8) does not
vanish, and localizing (8) at any p € Spec R with heightp < k, we obtain an exact
sequence of free Ry-modules; hence T, = 0, and accordingly, supportT C V(a).

Taking cohomology with supports in a in the sequence Sj_1, we have H¥(M) =
HY(N)=T.
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