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modules.
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1 Introduction and Preliminaries

Let R be a Noetherian ring and let M be a finitely generated R-module. As is
well known (see [5, (11.1.1)]), the set of points p ∈ Spec R such that Mp is a free
Rp-module is an open subset in the Zariski topology. Hence, its complement C is
a closed subset, called the non-free locus of M , whose corresponding radical ideal
(cf. [1, II, §4.3, Proposition 11(iii)]) is denoted by a = a(M) = I(C) throughout the
paper.

Proposition 1.1. Let R be a Noetherian ring and let F1
ϕ−→ F0 → M → 0 be a

finite free presentation of the R-module M . If rankϕ = r and rankF0 = n, then
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the ideal a(M) coincides with the radical of (n− r)-th Fitting invariant of M ; i.e.,
a(M) = rad Ir(ϕ).

Proof. As a is a radical ideal, we only need to prove that V (a) = V (Ir(ϕ)), or
conversely, that a 6⊆ p if and only if Ir(ϕ) 6⊆ p for every p ∈ Spec R. If p does
not contain a, then Mp is a free Rp-module and hence Ir(ϕ)p = Rp (for example,
see [2, Proposition 1.4.9]); therefore Ir(ϕ) 6⊆ p. The converse also follows from the
previous reference. 2

Below, we use the ideal a in order to obtain classifications of two classes of
modules and a characterization of k-th syzygies. More precisely, in Section 2, a
reflexive finitely generated module M over a Noetherian local domain whose dual
module is of projective dimension one is shown to be completely determined by
H2

a(M). Similarly, in Section 3, we obtain a classification of the ideal modules (in
the sense of [7, Proposition 5.1]) over a regular local ring by means of H1

a(M). As
a consequence of such a result (see Corollary 3.2), from a decomposition H1

a(M) =⊕r
i=1 R/ai for certain ideals a1, . . . , ar, we deduce that M is stably equivalent to⊕r
i=1 ai. By applying these results and from the existence of a dualizing functor,

in Section 4, we also obtain a classification of the torsion-free finitely generated and
non-free modules of projective dimension one over a regular local ring.

Finally, in Section 5, we obtain a characterization of k-th syzygies within the
class of reflexive finitely generated R-modules over a regular local ring by the van-
ishing of the groups Hi

a(M) for i = 0, . . . , k− 1. To a certain extent, this result can
be considered as a generalization of the characterization of the vector bundles on
the punctured spectrum, which are k-th syzygies (see [4, Lemma 6.5]).

2 Reflexive Modules with Dual of Projective Dimension One

Lemma 2.1. If R is a Cohen–Macaulay ring, then H1
q (R) = 0 for every ideal q

with height q ≥ 2.

Proof. By virtue of the hypothesis, we know that depthRp = dim Rp for every
p ∈ Spec R (see [2, Theorem 2.1.3]). Therefore, depthqR = min p∈V (q) depthRp =
min p∈V (q) dimRp ≥ 2, and we can conclude by simply applying the cohomological
interpretation of depth. 2

Theorem 2.2. Let (R, m) be a regular local ring of dimension d ≥ 3. Then
every reflexive finitely generated R-module M with proj dimM∨ = 1 is completely
determined by H2

a(M).

Proof. Let

0 → F1
ϕ−→ F0 → M∨ → 0 (1)

be a minimal free resolution of M∨. As M is reflexive, dualizing (1), we obtain the
exact sequence

0 → M → F∨0
ϕ∨−→ F∨1 → Ext1(M∨, R) → 0, (2)
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which breaks into two short exact sequences

0 → Im ϕ∨ → F∨1 → Ext1(M∨, R) → 0, (3)
0 → M → F∨0 → Im ϕ∨ → 0. (4)

First, we prove that Ext1(M∨, R) is isomorphic to H2
a(M). Owing to reflexivity,

M and M∨ have the same non-free locus; hence support Ext1(M∨, R) ⊆ V (a), and
accordingly, H0

a(Ext1(M∨, R)) = Ext1(M∨, R). Moreover, as Im ϕ∨ and F∨1 are
torsion-free modules, both H0

a(Im ϕ∨) and H0
a(F∨1 ) vanish, and taking cohomology

with supports in V (a) in (3), by virtue of Lemma 2.1, we obtain Ext1(M∨, R) ∼=
H1

a(Im ϕ∨). Similarly, by taking cohomology with supports in V (a) in (4), we ob-
tain an isomorphism H1

a(Im ϕ∨) ∼= H2
a(M). Hence, Ext1(M∨, R) ∼= H2

a(M), and
consequently, M is a second syzygy module of H2

a(M). In order to conclude, we
only need to prove that the minimality of the resolution (1) implies that of (2). In
fact, if a linear form ω0 ∈ F∨0 exists such that ϕ∨(ω0) /∈ mF∨1 (cf. [2, Proposition
1.3.1]), then by Nakayama’s lemma, ϕ∨(ω0) belongs to a basis of F∨1 and hence
there exists an element x1 ∈ F1 such that ϕ∨(ω0)(x1) = ω0(ϕ(x1)) = 1. Hence,
Im ϕ 6⊂ mF0 and (1) is not minimal. 2

3 Ideal Modules

Theorem 3.1. Let M be an ideal module over a regular Noetherian local ring
(R, m) of dimension d ≥ 2, and let r(M) be the greatest rank of a free direct
summand in M . Then M is completely determined by r(M) and H1

a(M).

Proof. The module M embeds into its bidual and the quotient T = M∨∨/M is a
torsion module. First of all, we prove that H1

a(M) = T . For every prime ideal p of
R with height p ≤ 1, Mp is a free Rp-module as R is regular and M is torsionless.
Therefore, Mp = M∨∨

p and accordingly p /∈ V (a); hence height a ≥ 2. Since M∨∨ is
free, by virtue of Lemma 2.1, we conclude that H1

a(M∨∨) = 0. This fact proves our
claim by simply taking cohomology with supports in a in the sequence 0 → M →
M∨∨ → T → 0, and recalling that H0

a(M) = H0
a(M∨∨) = 0 as M and M∨∨ are

torsionless, and H0
a(T ) = T as the support of T is contained in V (a).

If M and M ′ are two isomorphic ideal modules, then T and T ′ = M ′∨∨/M ′ are
also isomorphic. Moreover, from the very definition of r(M), it follows that there
exist two submodules F, M̄ ⊆ M such that F is free of rank r(M) and M = F ⊕M̄ .
Hence, we only need to prove that if M and M ′ are two ideal modules such that
r(M) = r(M ′) and T ∼= T ′, then M̄ ∼= M̄ ′. Let π : M̄∨∨ → T = M̄∨∨/M̄ (resp.,
π′ : M̄ ′∨∨ → T ′ = M̄ ′∨∨/M̄ ′) be the quotient map. As M̄∨∨ and M̄ ′∨∨ are free R-
modules, every isomorphism φ : T → T ′ induces a homomorphism Φ: M̄∨∨ → M̄ ′∨∨

making the following diagram commutative:

M̄∨∨ π−→ T → 0
Φ ↓ ↓ φ

M̄ ′∨∨ π′−→T ′ → 0

We claim M̄ ⊂ mM̄∨∨ (resp., M̄ ′ ⊂ mM̄ ′∨∨), otherwise, every element x̄ in M̄ not
belonging to mM̄∨∨ generates a submodule Rx̄, which is a direct summand in M̄
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by Nakayama’s lemma, thus contradicting the definition of r(M). Hence, rank M̄∨∨

= dimR/m(T/mT ), and similarly for the rank of M̄ ′∨∨. Accordingly, Φ is an iso-
morphism that induces an isomorphism from M̄ = kerπ onto M̄ ′ = kerπ′. 2

Corollary 3.2. With the same hypotheses as in Theorem 3.1, assume a decom-
position H1

a(M) =
⊕r

i=1 R/ai holds for certain ideals a1, . . . , ar in R. Then there
exists a free module F such that M ∼= F ⊕ ( ⊕r

i=1 ai

)
.

Proof. Let M = F ⊕ M̄ be as in the proof of the previous theorem. As R is a
unique factorization domain by virtue of our assumption, and each a∨i is a reflexive
R-module of rank 1 (cf. [6, Corollary 1.2, Proposition 1.9]), we conclude a∨i ∼= R;
hence

( ⊕r
i=1 ai

)∨∨ ∼= Rr. Moreover, from the first part of the proof of Theorem
3.1, we know that T =

⊕r
i=1 R/ai, and proceeding as in the second part of that

proof, we obtain M̄ ∼= ⊕r
i=1 ai. 2

Example 3.3. Let s, t be two variables over the field k, and let A = k[s4, s3t, st3, t4]
be the k-algebra, which is a classical example of a non-Cohen–Macaulay ring. We
also set R = k[s4, t4] and m = (s4, t4) ·R. The inclusion of R into A converts A into
an R-module generated by 1, s3t, st3, s2t2, and we have A = s2t2m ⊕ F , where F
is the R-module generated by 1, s3t, st3. As m∨∨ = HomR(HomR(m, R)) ∼= R, we
readily conclude that A is an ideal R-module and, in this case, we have r(A) = 3
and H1

a(A) = k.

4 Torsion-free Modules of Projective Dimension One

Let R be a Noetherian local domain and let F
π−→ M be a minimal epimorphism

of a torsion-free finitely generated and non-free R-module M , where F is a free
R-module, which is completely determined by M up to an isomorphism. Dualizing
the short exact sequence

0 → N
ϕ−→ F

π−→ M → 0, (5)

we obtain 0 → M∨ π∨−→ F∨
ϕ∨−→ N∨. The ‘codual module’ of M is defined to be

the R-module cd M = Im ϕ∨, which is also a torsion-free finitely generated and
non-free R-module, as follows from the following exact sequence by virtue of the
assumptions on M :

0 → M∨ π∨−→ F∨
ϕ∨−→ cd M → 0. (6)

Proposition 4.1. Let R be a Noetherian local domain and let M be a torsion-free
finitely generated and non-free R-module. We have:

(i) cd (cd M) = M .
(ii) a(M) = a(cdM).

Proof. (i) Dualizing (6), we obtain 0 → (cd M)∨
ϕ∨∨−→ F

π∨∨−→ M∨∨. From this
sequence and (5), taking the natural inclusion M ⊆ M∨∨ into account, we obtain
an injection N ⊆ (cd M)∨. As N and (cdM)∨ have the same rank (equal to
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rankF − rankM), there exists r ∈ R such that r · (cd M)∨ ⊆ N , and r must be
invertible because M is torsion-free.

(ii) If (cdM)p is a free Rp-module, then (M∨)p (and hence Mp) is also free, as
follows from (6). Hence, a(M) ⊆ a(cdM), and we can conclude by virtue of (i). 2

Remark 4.2. More formally, we can state that ‘taking the codual module’ is a
dualizing functor in the sense of [3, §21.1].

Proposition 4.3. Let R be a regular Noetherian local domain of dimension
d ≥ 2. Then every torsion-free finitely generated non-free R-module M of pro-
jective dimension one is completely determined by r(cd M) and H1

a(cdM).

Proof. By virtue of Theorem 3.1, we only need to prove that ‘taking the codual
module’ is an equivalence between the category of torsion-free finitely generated
non-free R-modules of projective dimension one and that of ideal torsion-free finitely
generated non-free R-modules. Let 0 → F1

ϕ−→ F0
π−→ M → 0 be a minimal free

resolution of M . From [7, Proposition 5.1(e)], we know that cdM = Im ϕ∨ is an
ideal module. Conversely, if M is an ideal torsion-free finitely generated non-free
R-module, then again from the reference above, it follows that cdM is of projective
dimension one. 2

5 Reflexive Modules over a Regular Ring Which Are k-th Syzygies

Theorem 5.1. Let R be a regular Noetherian local ring. A reflexive finitely gener-
ated R-module M is a k-th syzygy if and only if Hi

a(M) = 0 for every i = 0, . . . , k−1.

Proof. Let M be a reflexive finitely generated R-module. Because of reflexivity
(e.g., see [2, 1.4.19(c)]), we can assume k ≥ 2. Let

0 → Fj
ϕj−1−→ Fj−1

ϕj−2−→ · · · ϕ1−→ F1
ϕ0−→ F0 → M∨ → 0 (7)

be a minimal free resolution of M∨. If M is a k-th syzygy, then by dualizing (7),
since M is reflexive, we obtain an exact sequence (see the proof of [4, Lemma 5.1])

0 → M → F∨0
ϕ∨0−→ F∨1

ϕ∨1−→ · · · ϕ∨k−3−→ F∨k−2

ϕ∨k−2−→ F∨k−1 → N → 0 (8)

with N = coker ϕ∨k−2, which breaks into the following k short exact sequences:

S0 : 0 → M → F∨0 → Im ϕ∨0 → 0,

Si : 0 → Im ϕ∨i−1 → F∨i → Im ϕ∨i → 0 (i = 1, . . . , k − 2),
Sk−1 : 0 → Im ϕ∨k−2 → F∨k−1 → N → 0.

Let p ∈ Spec R be a prime ideal with height p ≤ k. As M is a k-th syzygy, it
satisfies Serre’s Sk condition (e.g., see [4, Theorem 3.8(b)]), and accordingly, we
have depthM ≥ height p. From the Auslander–Buchsbaum formula [2, Theorem
1.3.3], we thus conclude that proj dimMp = 0, or in other words, Mp is a free
Rp-module. Therefore, p ∈ V (a) implies height p ≥ k + 1, so that height a ≥ k + 1
and hence d = dim R ≥ k + 1. Recalling the cohomological interpretation of depth,
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from the sequence S0 above, we obtain Hp−1
a (Im ϕ∨0 ) ∼= Hp

a (M) for p = 1, . . . , d−1,
and similarly, from Si for i = 1, . . . , k−2, we have Hp−1

a (Im ϕ∨i ) ∼= Hp
a (Im ϕ∨i−1) for

p = 1, . . . , d− 1. In particular, for every p = 1, . . . , k − 1, we have

Hp
a (M) ∼= Hp−1

a (Im ϕ∨0 ) ∼= Hp−2
a (Im ϕ∨1 ) ∼= · · ·

∼= Hp−j
a (Im ϕ∨j−1) ∼= · · · ∼= H0

a(Im ϕ∨p−1).

Moreover, we have H0
a(M) = H0

a(Im ϕ∨0 ) = · · · = H0
a(ϕ∨k−2) = 0 as all these modules

are torsion-free. Hence, Hp
a (M) = 0 for p = 0, . . . , k − 1, and we can conclude the

first part of the proof.
Conversely, assume Hi

a(M) = 0 for i = 0, . . . , k − 1. Again by virtue of [4,
Theorem 3.8], in order to prove that M is a k-th syzygy, we only need to state
that M satisfies Serre’s Sk condition. Given p ∈ Spec R, we are led to distinguish
two cases: If Mp is a free Rp-module, then depthMp = depthRp and the Sk

condition certainly holds. If Mp is not free as an Rp-module, then p ∈ V (a) and we
have depthMp ≥ depthaM = min p∈V (a) depthMp ≥ k, so that M satisfies the Sk

condition again. The theorem is thus established. 2

Corollary 5.2. With the same assumptions as in Theorem 5.1, the module M
satisfies the Sk condition if and only if depthaM ≥ k.

Remark 5.3. If M is a k-th syzygy strictly, i.e., if M is a k-th syzygy but not a
(k + 1)-th syzygy, then the torsion submodule T of the module N in (8) does not
vanish, and localizing (8) at any p ∈ Spec R with height p ≤ k, we obtain an exact
sequence of free Rp-modules; hence Tp = 0, and accordingly, supportT ⊆ V (a).
Taking cohomology with supports in a in the sequence Sk−1, we have Hk

a (M) ∼=
H0

a(N) = T .
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