Algebra Colloquium © 2008 AMSS CAS & SUZHOU UNIV

Local Cohomology with Supports in the Non-free Locus*

Agustín Marcelo

Departamento de Matemáticas, Universidad de Las Palmas de Gran Canaria Tafira Baja, Edificio de Informática y Matemáticas 35017-Las Palmas de Gran Canaria, Spain E-mail: amarcelo@dma.ulpgc.es

J. Muñoz Masqué

Instituto de Física Aplicada, CSIC, C/Serrano 144, 28006-Madrid, Spain E-mail: jaime@iec.csic.es

C. Rodríguez Mielgo

Departamento de Matemáticas, Universidad de Las Palmas de Gran Canaria Tafira Baja, Edificio de Informática y Matemáticas 35017-Las Palmas de Gran Canaria, Spain E-mail: cesar@dma.ulpgc.es

> Received 9 May 2007 Revised 17 July 2007 Communicated by Zhongming Tang

Abstract. The groups of local cohomology with supports in the non-free locus of a module are used in order to obtain three classifications and one characterization of four classes of modules.

2000 Mathematics Subject Classification: primary 13C05; secondary 13E05, 13E15 **Keywords:** ideal module, local cohomology, non-free locus, projective dimension, reflexive module

1 Introduction and Preliminaries

Let R be a Noetherian ring and let M be a finitely generated R-module. As is well known (see [5, (11.1.1)]), the set of points $\mathfrak{p} \in \operatorname{Spec} R$ such that $M_{\mathfrak{p}}$ is a free $R_{\mathfrak{p}}$ -module is an open subset in the Zariski topology. Hence, its complement C is a closed subset, called the non-free locus of M, whose corresponding radical ideal (cf. [1, II, §4.3, Proposition 11(iii)]) is denoted by $\mathfrak{a} = \mathfrak{a}(M) = \mathfrak{I}(C)$ throughout the paper.

Proposition 1.1. Let R be a Noetherian ring and let $F_1 \xrightarrow{\varphi} F_0 \to M \to 0$ be a finite free presentation of the R-module M. If rank $\varphi = r$ and rank $F_0 = n$, then

^{*}Supported by Ministerio de Ciencia y Tecnología of Spain, under grants BFM2001-2718 and MTM2005-00173.

the ideal $\mathfrak{a}(M)$ coincides with the radical of (n-r)-th Fitting invariant of M; i.e., $\mathfrak{a}(M) = \operatorname{rad} I_r(\varphi)$.

Proof. As \mathfrak{a} is a radical ideal, we only need to prove that $V(\mathfrak{a}) = V(I_r(\varphi))$, or conversely, that $\mathfrak{a} \not\subseteq \mathfrak{p}$ if and only if $I_r(\varphi) \not\subseteq \mathfrak{p}$ for every $\mathfrak{p} \in \operatorname{Spec} R$. If \mathfrak{p} does not contain \mathfrak{a} , then $M_{\mathfrak{p}}$ is a free $R_{\mathfrak{p}}$ -module and hence $I_r(\varphi)_{\mathfrak{p}} = R_{\mathfrak{p}}$ (for example, see [2, Proposition 1.4.9]); therefore $I_r(\varphi) \not\subseteq \mathfrak{p}$. The converse also follows from the previous reference. \Box

Below, we use the ideal \mathfrak{a} in order to obtain classifications of two classes of modules and a characterization of k-th syzygies. More precisely, in Section 2, a reflexive finitely generated module M over a Noetherian local domain whose dual module is of projective dimension one is shown to be completely determined by $H^2_{\mathfrak{a}}(M)$. Similarly, in Section 3, we obtain a classification of the ideal modules (in the sense of [7, Proposition 5.1]) over a regular local ring by means of $H^1_{\mathfrak{a}}(M)$. As a consequence of such a result (see Corollary 3.2), from a decomposition $H^1_{\mathfrak{a}}(M) = \bigoplus_{i=1}^r R/\mathfrak{a}_i$ for certain ideals $\mathfrak{a}_1, \ldots, \mathfrak{a}_r$, we deduce that M is stably equivalent to $\bigoplus_{i=1}^r \mathfrak{a}_i$. By applying these results and from the existence of a dualizing functor, in Section 4, we also obtain a classification of the torsion-free finitely generated and non-free modules of projective dimension one over a regular local ring.

Finally, in Section 5, we obtain a characterization of k-th syzygies within the class of reflexive finitely generated R-modules over a regular local ring by the vanishing of the groups $H^i_{\mathfrak{a}}(M)$ for $i = 0, \ldots, k-1$. To a certain extent, this result can be considered as a generalization of the characterization of the vector bundles on the punctured spectrum, which are k-th syzygies (see [4, Lemma 6.5]).

2 Reflexive Modules with Dual of Projective Dimension One

Lemma 2.1. If R is a Cohen–Macaulay ring, then $H^1_{\mathfrak{q}}(R) = 0$ for every ideal \mathfrak{q} with height $\mathfrak{q} \geq 2$.

Proof. By virtue of the hypothesis, we know that depth $R_{\mathfrak{p}} = \dim R_{\mathfrak{p}}$ for every $\mathfrak{p} \in \operatorname{Spec} R$ (see [2, Theorem 2.1.3]). Therefore, depth_q $R = \min_{\mathfrak{p} \in V(\mathfrak{q})} \operatorname{depth} R_{\mathfrak{p}} = \min_{\mathfrak{p} \in V(\mathfrak{q})} \dim R_{\mathfrak{p}} \geq 2$, and we can conclude by simply applying the cohomological interpretation of depth. \Box

Theorem 2.2. Let (R, \mathfrak{m}) be a regular local ring of dimension $d \geq 3$. Then every reflexive finitely generated *R*-module *M* with proj dim $M^{\vee} = 1$ is completely determined by $H^2_{\mathfrak{a}}(M)$.

Proof. Let

$$0 \to F_1 \xrightarrow{\varphi} F_0 \to M^{\vee} \to 0 \tag{1}$$

be a minimal free resolution of M^{\vee} . As M is reflexive, dualizing (1), we obtain the exact sequence

$$0 \to M \to F_0^{\vee} \xrightarrow{\varphi^{\vee}} F_1^{\vee} \to \operatorname{Ext}^1(M^{\vee}, R) \to 0,$$
(2)

which breaks into two short exact sequences

$$0 \to \operatorname{Im} \varphi^{\vee} \to F_1^{\vee} \to \operatorname{Ext}^1(M^{\vee}, R) \to 0, \tag{3}$$

$$0 \to M \to F_0^{\vee} \to \operatorname{Im} \varphi^{\vee} \to 0.$$
(4)

First, we prove that $\operatorname{Ext}^1(M^{\vee}, R)$ is isomorphic to $H^2_{\mathfrak{a}}(M)$. Owing to reflexivity, M and M^{\vee} have the same non-free locus; hence support $\operatorname{Ext}^1(M^{\vee}, R) \subseteq V(\mathfrak{a})$, and accordingly, $H^0_{\mathfrak{a}}(\operatorname{Ext}^1(M^{\vee}, R)) = \operatorname{Ext}^1(M^{\vee}, R)$. Moreover, as $\operatorname{Im} \varphi^{\vee}$ and F^{\vee}_1 are torsion-free modules, both $H^0_{\mathfrak{a}}(\operatorname{Im} \varphi^{\vee})$ and $H^0_{\mathfrak{a}}(F^{\vee}_1)$ vanish, and taking cohomology with supports in $V(\mathfrak{a})$ in (3), by virtue of Lemma 2.1, we obtain $\operatorname{Ext}^1(M^{\vee}, R) \cong$ $H^1_{\mathfrak{a}}(\operatorname{Im} \varphi^{\vee})$. Similarly, by taking cohomology with supports in $V(\mathfrak{a})$ in (4), we obtain an isomorphism $H^1_{\mathfrak{a}}(\operatorname{Im} \varphi^{\vee}) \cong H^2_{\mathfrak{a}}(M)$. Hence, $\operatorname{Ext}^1(M^{\vee}, R) \cong H^2_{\mathfrak{a}}(M)$, and consequently, M is a second syzygy module of $H^2_{\mathfrak{a}}(M)$. In order to conclude, we only need to prove that the minimality of the resolution (1) implies that of (2). In fact, if a linear form $\omega_0 \in F^{\vee}_0$ exists such that $\varphi^{\vee}(\omega_0) \notin \mathfrak{m} F^{\vee}_1$ (cf. [2, Proposition 1.3.1]), then by Nakayama's lemma, $\varphi^{\vee}(\omega_0)$ belongs to a basis of F^{\vee}_1 and hence there exists an element $x_1 \in F_1$ such that $\varphi^{\vee}(\omega_0)(x_1) = \omega_0(\varphi(x_1)) = 1$. Hence, $\operatorname{Im} \varphi \notin \mathfrak{m} F_0$ and (1) is not minimal. \square

3 Ideal Modules

Theorem 3.1. Let M be an ideal module over a regular Noetherian local ring (R, \mathfrak{m}) of dimension $d \geq 2$, and let r(M) be the greatest rank of a free direct summand in M. Then M is completely determined by r(M) and $H^1_{\mathfrak{a}}(M)$.

Proof. The module M embeds into its bidual and the quotient $T = M^{\vee\vee}/M$ is a torsion module. First of all, we prove that $H^1_{\mathfrak{a}}(M) = T$. For every prime ideal \mathfrak{p} of R with height $\mathfrak{p} \leq 1$, $M_{\mathfrak{p}}$ is a free $R_{\mathfrak{p}}$ -module as R is regular and M is torsionless. Therefore, $M_{\mathfrak{p}} = M_{\mathfrak{p}}^{\vee\vee}$ and accordingly $\mathfrak{p} \notin V(\mathfrak{a})$; hence height $\mathfrak{a} \geq 2$. Since $M^{\vee\vee}$ is free, by virtue of Lemma 2.1, we conclude that $H^1_{\mathfrak{a}}(M^{\vee\vee}) = 0$. This fact proves our claim by simply taking cohomology with supports in \mathfrak{a} in the sequence $0 \to M \to M^{\vee\vee} \to T \to 0$, and recalling that $H^0_{\mathfrak{a}}(M) = H^0_{\mathfrak{a}}(M^{\vee\vee}) = 0$ as M and $M^{\vee\vee}$ are torsionless, and $H^0_{\mathfrak{a}}(T) = T$ as the support of T is contained in $V(\mathfrak{a})$.

If M and M' are two isomorphic ideal modules, then T and $T' = M'^{\vee\vee}/M'$ are also isomorphic. Moreover, from the very definition of r(M), it follows that there exist two submodules $F, \overline{M} \subseteq M$ such that F is free of rank r(M) and $M = F \oplus \overline{M}$. Hence, we only need to prove that if M and M' are two ideal modules such that r(M) = r(M') and $T \cong T'$, then $\overline{M} \cong \overline{M'}$. Let $\pi \colon \overline{M}^{\vee\vee} \to T = \overline{M}^{\vee\vee}/\overline{M}$ (resp., $\pi' \colon \overline{M'}^{\vee\vee} \to T' = \overline{M'}^{\vee\vee}/\overline{M'}$) be the quotient map. As $\overline{M}^{\vee\vee}$ and $\overline{M'}^{\vee} \to \overline{M'}^{\vee\vee}$ modules, every isomorphism $\phi \colon T \to T'$ induces a homomorphism $\Phi \colon \overline{M}^{\vee\vee} \to \overline{M'}^{\vee\vee}$

$$\begin{array}{ccc} \bar{M}^{\vee\vee} & \stackrel{\pi}{\longrightarrow} T \to 0 \\ \Phi \downarrow & \downarrow \phi \\ \bar{M}'^{\vee\vee} & \stackrel{\pi'}{\longrightarrow} T' \to 0 \end{array}$$

We claim $\overline{M} \subset \mathfrak{m}\overline{M}^{\vee\vee}$ (resp., $\overline{M}' \subset \mathfrak{m}\overline{M}'^{\vee\vee}$), otherwise, every element \overline{x} in \overline{M} not belonging to $\mathfrak{m}\overline{M}^{\vee\vee}$ generates a submodule $R\overline{x}$, which is a direct summand in \overline{M}

by Nakayama's lemma, thus contradicting the definition of r(M). Hence, rank $\overline{M}^{\vee\vee}$ = dim_{R/\mathfrak{m}} $(T/\mathfrak{m}T)$, and similarly for the rank of $\overline{M}'^{\vee\vee}$. Accordingly, Φ is an isomorphism that induces an isomorphism from $\overline{M} = \ker \pi$ onto $\overline{M}' = \ker \pi'$.

Corollary 3.2. With the same hypotheses as in Theorem 3.1, assume a decomposition $H^1_{\mathfrak{a}}(M) = \bigoplus_{i=1}^r R/\mathfrak{a}_i$ holds for certain ideals $\mathfrak{a}_1, \ldots, \mathfrak{a}_r$ in R. Then there exists a free module F such that $M \cong F \oplus (\bigoplus_{i=1}^r \mathfrak{a}_i)$.

Proof. Let $M = F \oplus \overline{M}$ be as in the proof of the previous theorem. As R is a unique factorization domain by virtue of our assumption, and each \mathfrak{a}_i^{\vee} is a reflexive R-module of rank 1 (cf. [6, Corollary 1.2, Proposition 1.9]), we conclude $\mathfrak{a}_i^{\vee} \cong R$; hence $\left(\bigoplus_{i=1}^r \mathfrak{a}_i\right)^{\vee \vee} \cong R^r$. Moreover, from the first part of the proof of Theorem 3.1, we know that $T = \bigoplus_{i=1}^r R/\mathfrak{a}_i$, and proceeding as in the second part of that proof, we obtain $\overline{M} \cong \bigoplus_{i=1}^r \mathfrak{a}_i$.

Example 3.3. Let s, t be two variables over the field k, and let $A = k[s^4, s^3t, st^3, t^4]$ be the k-algebra, which is a classical example of a non-Cohen–Macaulay ring. We also set $R = k[s^4, t^4]$ and $\mathfrak{m} = (s^4, t^4) \cdot R$. The inclusion of R into A converts A into an R-module generated by $1, s^3t, st^3, s^2t^2$, and we have $A = s^2t^2\mathfrak{m} \oplus F$, where Fis the R-module generated by $1, s^3t, st^3$. As $\mathfrak{m}^{\vee\vee} = \operatorname{Hom}_R(\operatorname{Hom}_R(\mathfrak{m}, R)) \cong R$, we readily conclude that A is an ideal R-module and, in this case, we have r(A) = 3and $H_a^{\dagger}(A) = k$.

4 Torsion-free Modules of Projective Dimension One

Let R be a Noetherian local domain and let $F \xrightarrow{\pi} M$ be a minimal epimorphism of a torsion-free finitely generated and non-free R-module M, where F is a free R-module, which is completely determined by M up to an isomorphism. Dualizing the short exact sequence

$$0 \to N \xrightarrow{\varphi} F \xrightarrow{\pi} M \to 0, \tag{5}$$

we obtain $0 \to M^{\vee} \xrightarrow{\pi^{\vee}} F^{\vee} \xrightarrow{\varphi^{\vee}} N^{\vee}$. The 'codual module' of M is defined to be the R-module $\operatorname{cd} M = \operatorname{Im} \varphi^{\vee}$, which is also a torsion-free finitely generated and non-free R-module, as follows from the following exact sequence by virtue of the assumptions on M:

$$0 \to M^{\vee} \xrightarrow{\pi^{\vee}} F^{\vee} \xrightarrow{\varphi^{\vee}} \operatorname{cd} M \to 0.$$
(6)

Proposition 4.1. Let R be a Noetherian local domain and let M be a torsion-free finitely generated and non-free R-module. We have:

- (i) $\operatorname{cd}(\operatorname{cd} M) = M$.
- (ii) $\mathfrak{a}(M) = \mathfrak{a}(\operatorname{cd} M).$

Proof. (i) Dualizing (6), we obtain $0 \to (\operatorname{cd} M)^{\vee} \xrightarrow{\varphi^{\vee\vee}} F \xrightarrow{\pi^{\vee\vee}} M^{\vee\vee}$. From this sequence and (5), taking the natural inclusion $M \subseteq M^{\vee\vee}$ into account, we obtain an injection $N \subseteq (\operatorname{cd} M)^{\vee}$. As N and $(\operatorname{cd} M)^{\vee}$ have the same rank (equal to

rank F – rank M), there exists $r \in R$ such that $r \cdot (\operatorname{cd} M)^{\vee} \subseteq N$, and r must be invertible because M is torsion-free.

(ii) If $(\operatorname{cd} M)_{\mathfrak{p}}$ is a free $R_{\mathfrak{p}}$ -module, then $(M^{\vee})_{\mathfrak{p}}$ (and hence $M_{\mathfrak{p}}$) is also free, as follows from (6). Hence, $\mathfrak{a}(M) \subseteq \mathfrak{a}(\operatorname{cd} M)$, and we can conclude by virtue of (i). \Box

Remark 4.2. More formally, we can state that 'taking the codual module' is a dualizing functor in the sense of $[3, \S{2}1.1]$.

Proposition 4.3. Let R be a regular Noetherian local domain of dimension $d \ge 2$. Then every torsion-free finitely generated non-free R-module M of projective dimension one is completely determined by $r(\operatorname{cd} M)$ and $H^1_{\mathfrak{a}}(\operatorname{cd} M)$.

Proof. By virtue of Theorem 3.1, we only need to prove that 'taking the codual module' is an equivalence between the category of torsion-free finitely generated non-free R-modules of projective dimension one and that of ideal torsion-free finitely generated non-free R-modules. Let $0 \to F_1 \xrightarrow{\varphi} F_0 \xrightarrow{\pi} M \to 0$ be a minimal free resolution of M. From [7, Proposition 5.1(e)], we know that $\operatorname{cd} M = \operatorname{Im} \varphi^{\vee}$ is an ideal module. Conversely, if M is an ideal torsion-free finitely generated non-free R-module, then again from the reference above, it follows that $\operatorname{cd} M$ is of projective dimension one.

5 Reflexive Modules over a Regular Ring Which Are k-th Syzygies

Theorem 5.1. Let R be a regular Noetherian local ring. A reflexive finitely generated R-module M is a k-th syzygy if and only if $H^i_{\mathfrak{a}}(M) = 0$ for every $i = 0, \ldots, k-1$.

Proof. Let M be a reflexive finitely generated R-module. Because of reflexivity (e.g., see [2, 1.4.19(c)]), we can assume $k \ge 2$. Let

$$0 \to F_j \xrightarrow{\varphi_{j-1}} F_{j-1} \xrightarrow{\varphi_{j-2}} \cdots \xrightarrow{\varphi_1} F_1 \xrightarrow{\varphi_0} F_0 \to M^{\vee} \to 0$$

$$\tag{7}$$

be a minimal free resolution of M^{\vee} . If M is a k-th syzygy, then by dualizing (7), since M is reflexive, we obtain an exact sequence (see the proof of [4, Lemma 5.1])

$$0 \to M \to F_0^{\vee} \xrightarrow{\varphi_0^{\vee}} F_1^{\vee} \xrightarrow{\varphi_1^{\vee}} \cdots \xrightarrow{\varphi_{k-3}^{\vee}} F_{k-2}^{\vee} \xrightarrow{\varphi_{k-2}^{\vee}} F_{k-1}^{\vee} \to N \to 0$$
(8)

with $N = \operatorname{coker} \varphi_{k-2}^{\vee}$, which breaks into the following k short exact sequences:

,

$$S_0: \quad 0 \to M \to F_0^{\vee} \to \operatorname{Im} \varphi_0^{\vee} \to 0,$$

$$S_i: \quad 0 \to \operatorname{Im} \varphi_{i-1}^{\vee} \to F_i^{\vee} \to \operatorname{Im} \varphi_i^{\vee} \to 0 \quad (i = 1, \dots, k-2),$$

$$S_{k-1}: \quad 0 \to \operatorname{Im} \varphi_{k-2}^{\vee} \to F_{k-1}^{\vee} \to N \to 0.$$

Let $\mathfrak{p} \in \operatorname{Spec} R$ be a prime ideal with height $\mathfrak{p} \leq k$. As M is a k-th syzygy, it satisfies Serre's S_k condition (e.g., see [4, Theorem 3.8(b)]), and accordingly, we have depth $M \geq$ height \mathfrak{p} . From the Auslander–Buchsbaum formula [2, Theorem 1.3.3], we thus conclude that proj dim $M_{\mathfrak{p}} = 0$, or in other words, $M_{\mathfrak{p}}$ is a free $R_{\mathfrak{p}}$ -module. Therefore, $\mathfrak{p} \in V(\mathfrak{a})$ implies height $\mathfrak{p} \geq k+1$, so that height $\mathfrak{a} \geq k+1$ and hence $d = \dim R \geq k+1$. Recalling the cohomological interpretation of depth,

from the sequence S_0 above, we obtain $H^{p-1}_{\mathfrak{a}}(\operatorname{Im} \varphi_0^{\vee}) \cong H^p_{\mathfrak{a}}(M)$ for $p = 1, \ldots, d-1$, and similarly, from S_i for $i = 1, \ldots, k-2$, we have $H^{p-1}_{\mathfrak{a}}(\operatorname{Im} \varphi_i^{\vee}) \cong H^p_{\mathfrak{a}}(\operatorname{Im} \varphi_{i-1}^{\vee})$ for $p = 1, \ldots, d-1$. In particular, for every $p = 1, \ldots, k-1$, we have

$$H^p_{\mathfrak{a}}(M) \cong H^{p-1}_{\mathfrak{a}}(\operatorname{Im}\varphi_0^{\vee}) \cong H^{p-2}_{\mathfrak{a}}(\operatorname{Im}\varphi_1^{\vee}) \cong \cdots$$
$$\cong H^{p-j}_{\mathfrak{a}}(\operatorname{Im}\varphi_{j-1}^{\vee}) \cong \cdots \cong H^0_{\mathfrak{a}}(\operatorname{Im}\varphi_{p-1}^{\vee}).$$

Moreover, we have $H^0_{\mathfrak{a}}(M) = H^0_{\mathfrak{a}}(\operatorname{Im} \varphi_0^{\vee}) = \cdots = H^0_{\mathfrak{a}}(\varphi_{k-2}^{\vee}) = 0$ as all these modules are torsion-free. Hence, $H^p_{\mathfrak{a}}(M) = 0$ for $p = 0, \ldots, k-1$, and we can conclude the first part of the proof.

Conversely, assume $H^i_{\mathfrak{a}}(M) = 0$ for $i = 0, \ldots, k - 1$. Again by virtue of [4, Theorem 3.8], in order to prove that M is a k-th syzygy, we only need to state that M satisfies Serre's S_k condition. Given $\mathfrak{p} \in \operatorname{Spec} R$, we are led to distinguish two cases: If $M_{\mathfrak{p}}$ is a free $R_{\mathfrak{p}}$ -module, then depth $M_{\mathfrak{p}} = \operatorname{depth} R_{\mathfrak{p}}$ and the S_k condition certainly holds. If $M_{\mathfrak{p}}$ is not free as an $R_{\mathfrak{p}}$ -module, then $\mathfrak{p} \in V(\mathfrak{a})$ and we have depth $M_{\mathfrak{p}} \geq \operatorname{depth}_{\mathfrak{a}} M = \min_{\mathfrak{p} \in V(\mathfrak{a})} \operatorname{depth} M_{\mathfrak{p}} \geq k$, so that M satisfies the S_k condition again. The theorem is thus established. \Box

Corollary 5.2. With the same assumptions as in Theorem 5.1, the module M satisfies the S_k condition if and only if depth_a $M \ge k$.

Remark 5.3. If M is a k-th syzygy strictly, i.e., if M is a k-th syzygy but not a (k+1)-th syzygy, then the torsion submodule T of the module N in (8) does not vanish, and localizing (8) at any $\mathfrak{p} \in \operatorname{Spec} R$ with height $\mathfrak{p} \leq k$, we obtain an exact sequence of free $R_{\mathfrak{p}}$ -modules; hence $T_{\mathfrak{p}} = 0$, and accordingly, support $T \subseteq V(\mathfrak{a})$. Taking cohomology with supports in \mathfrak{a} in the sequence S_{k-1} , we have $H^k_{\mathfrak{a}}(M) \cong H^0_{\mathfrak{a}}(N) = T$.

Acknowledgement. We would like to thank Professor Peter Schenzel for his valuable comments and suggestions in preparing the manuscript.

References

- [1] N. Bourbaki, Elements of Mathematics, Commutative Algebra, Hermann, Paris, 1972.
- [2] W. Bruns, J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1993.
- [3] D. Eisenbud, Commutative Algebra. With a View Toward Algebraic Geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995.
- [4] Gr. Evans, Ph. Griffiths, Syzygies, Cambridge University Press, Cambridge, 1985.
- [5] A. Grothendieck, J. Dieudonné, EGA IV. Étude locale des schémas et des morphismes de schémas, Publ. Math. IHES, 20, 24, 28, 32, IHES, Paris, 1964, 1965, 1966, 1967.
- [6] R. Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980) 121–176.
- [7] A. Simis, B. Ulrich, W.V. Vasconcelos, Rees algebras of modules, Proc. London Math. Soc. 87 (2003) 610–646.