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Abstract. In this paper we present a method for finding a multiple 
representation of complex intensity changes that is useful in image 
segmentation. In computer vision, it is often required to separate objects from 
background in images taken under conditions of poor and non uniform 
illumination. In these situations, it is well-known that many of the intensity 
changes do not correspond to the object's boundaries but to other factors 
(mainly shadows and brightness variation) that complicate the segmentation 
process. With this in mind, we propose a segmentation process that proceeds in 
stages where one of the most important is the local description of the intensity 
changes giving rise to a multiple representation where many clues are 
accentuated. Other higher level stages act to select, manipulate, and combine 
clues in agreement with certain strategies (decision rules) which can be defined 
based on previous knowledge or heuristic information in order to segment the 
entities of interest. 

1 Introduction 

Despite a wide variety of different segmentation techniques [1,2] no general theory of 
segmentation exists. The general problems of segmentation involve processing arrays 
of numeric values representing brightness (or/and colour, depth, etc.) in order to 
extract features of boundaries and regions over local areas. Traditionally, the 
segmentation of images has been approached by methods based on discontinuity 
detection (edge-based methods) or similarity in some characteristics of the image 
(region-based methods). Unfortunately, in real images, due to noise and other factors, 
neither the edge-based methods nor the region-based methods give anywhere near 
perfect results [3]. Another aspect to be considered is that the low level processes can 
only produce partitions of the image on a nonsemantic basis [4], in such a way, that 
they may not necessarily correspond to the entities of interest. 

In applications in which an image consists of only objects and background in 
conditions of uniform illumination, one may attempt to segment the image by global 
thresholding. Threshold selection is usually based on the information contained in the 
gray level histogram of the image. However, problems appear when the object area is 
small compared to the background area or when both the object and the background 
assume some broad range of gray levels in cases of uneven background and poor 
illumination. In such cases, the histogram is no longer bimodal and the segmentation 
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Fig. 1. The global segmentation method. 

methods based on a threshold level computed from the global image histogram are 
often unsuccessful so there is a need for other methods [5,6,7]. 

Yanowitz and Bruckstein [8] have suggested a method for obtaining a threshold 
surface which is determined by interpolating the image gray levels at points where the 
gradient is high, indicating probable object edges. Thus, the gradient map and the gray 
level distribution give the necessary information for calculating an adaptive threshold 
level at each point of the image. This method has some drawbacks: it is necessary to 
apply a validation process to the segmented images, in order to eliminate some 
segmentation errors ("ghost" objects and stains) and, the edge detection at multiple 
scales is not considered. It's well known that the significant changes in the image can 
occur at multiple resolutions: fine and coarse resolutions. Therefore, it's necessary to 
use different size operators in order to detect all the intensity changes at their own 
scale. 

In this paper, we propose a segmentation method that allow us to separate objects 
from background in images where variable gray levels of objects and background and 
changing light conditions are present. In such cases, shadows and brightness could 
appear to complicate the segmentation process. Fig.1 shows a block diagram of the 
proposed global segmentation method where the multiple representation idea plays an 
important role. The method has been organised in several stages which can be 
classified in two types: processing stages and multiple representation stages. The 
processing stages operate on the entry data according to the algorithms that in each 
case are applied, and whose behaviour is determined by parameters that are adjusted 
and associated to each particular segmentation objective. Basically, three processing 
stages can be distinguished: local description of the intensity changes, regions 
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Fig. 2. Local description scheme of the intensity changes. 

constructor and objects labelling. The entry data to these stages are the primitive 
elements (pixels, intensity changes, linear regions) of the preceding representation 
stage. 

On the other hand, the multiple representation stages store new representations of 
the original image in which a number of clues are accentuated. Other processes act to 
select, manipulate, and combine clues in agreement with certain strategies (decision 
rules) which can be defined based on previous knowledge or heuristic information of 
the entities which we want to segment. In this way, we can see that each stage 
produces increasingly more useful descriptions of the image. 

The aim of this paper is to describe the first processing stage which is an 
expansion process that acts on the original image in order to obtain a multiple 
representation of the intensity changes. This process consists in the local description 
of the intensity changes detected at multiple scales whose purpose is to capture all the 
significant properties of objects present in an image since that the first clues about 
physical properties of the scene are provided by the intensity changes. The proposed 
method acts on one-dimensional profile of intensities. Its extension to the two- 
dimensional case is carried out by exploring the image in two perpendicular 
directions, such as rows and columns which give two representations of the image that 
must be combined according to some criteria. 

2 Local  Descript ion of  the Intensity Changes  

In this section, we present a method for locating and describing the intensity changes 
in an image that are due to diverse factors among which the most important are the 
changes in reflectance of visible surfaces and changes in illumination, in such a way 
that its geometrical structure, sharpness and contrast give enough information about 
the physical edges in the scene [9]. Thus, we consider that it is interesting to describe 
the intensity changes via a set of attributes which will help us in the detection and 
characterisation of regions from which the entities of interest can be obtained. An 
edge in an image corresponds to an intensity discontinuity in the scene. Although it 
may correspond to an edge of an object in space, it needs not [10]. It might well be 
the image of a shadow (illumination discontinuity) or surface mark (reflectance 
discontinuity). Fig. 2 shows a block diagram of the local description of the intensity 
changes that we are to address. 
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Fig. 3. a) Differential operator and b) Local maximum of peaks Vs sharpness. 

2.1 Basic Detection 

From the very early days of computer vision, edge detection was recognised as 
necessary, with a simple implementation of a gradient function. Noise sensitivity 
forced the inclusion of a smoothing step before differentiation. Various edge detection 
methods have appeared in the literature [11-17]. In this sense we are not interested in 
presenting a new edge detector but in capturing information about the physical edges 
by detecting and characterising the intensity changes by using a simple 1D edge 
detector, such as the first derivative of the Gaussian although others edge detectors 
can be used. The first derivative of the Gaussian approximates very closely an edge 
detector that is optimal given certain assumptions [12]. Its extension to the two- 
dimensional case is carried out by exploring the image in two perpendicular 
directions, such as rows and columns. 

The detection of intensity changes is carried out by convolving the intensity 
profile, l[x], with a differential kernel, g'(x,o)= -(x./o 2 )g(x,c;), obtained from the first 
derivative of the Gaussian as shown in Fig. 3a. 

x 2 

1 
g ( x , o ) =  2x]~"o e 2°2 

This convolution implements the basic process of smoothness and differentiation that 
can be found in many of the edge-detection methods. The smoothing operation serves 
two purposes. First, it reduces the effect of noise on the detection of intensity changes. 
Second, it sets the resolution or spatial scale at which the intensity changes are 
detected [9]. On the other hand, the physical interpretation of the convolution process 
is the subtraction of the mean intensities of two neighbouring regions. The standard 
deviation or scale o of the Gaussian determines the size of the regions in which the 
mean intensities are calculated. 

As a result of the convolution process a differential profile is obtained, in which 
the intensity changes result as peak-shaped no-null zones. The maximum value of the 
peaks depends both on the size of the filter and the transition sharpness supposing that 
there are no interference between adjacent transitions. The graph in Fig. 3b shows the 
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value of the local maximum of each one of the peaks for transitions of different 
sharpness when filters of different sizes are applied. The maximum degree of 
sharpness is obtained by a step-type transition. We can appreciate that for a fixed 
degree of sharpness and in the absence of adjacent transitions, the maximum value of 
the peaks increases depending on the size of the filter until a maximum value is 
reached which coincides with the contrast of the transition. 

On the other hand, it is well-known that the intensity changes produced in an 
image occur at different scales or spatial resolution (coarse and fine resolutions) in 
such a way that its detection demands the use of filters of different sizes. In real 
situations, it is difficult to find a single size of filter that can detect, in an optimal 
manner, all of  the transitions. Thus, we must use small-sized filters for the detection of 
transitions which correspond to fine details and large-sized filters for that 
corresponding to coarse details, which in many cases appears as diffuse transitions as 
a consequence of bad illumination conditions. Therefore, it is necessary to apply a set 
of filters of different sizes and their response combine in a convenient way to make 
the detection of intensity change at its own scale effective. Thus, in our approach we 
only use a small-sized filter (low-scale) for the detection of transitions which 
correspond to fine details and a large-sized filter (high-scale) for that corresponding to 
coarse details. 

2.2 Combining Information from Multiple Scales 

Next step is the combination of the differential responses of each individual scales in 
order to obtain a new differential profile called multiscale differential profile which 
serves as a reference for searching the intensity changes detected at the different 
scales. The solution that we have adopted for obtaining each point of the multiscale 
differential profile is based on taking the maximum response of the individual scales, 
both sign and magnitude. This can be expressed as: 

l'(x)am= MAX (I'(x)~l , I'(x)o2 ). 
Where l'(x)~1, l'(x)~2 are the differential profiles that correspond to the "n" individual 
scales; l'(x)~m is the new multiscale differential profile obtained from the combination 
process and, MAX(a,b) is a function which gives the value of "a" if, lal > Ibl or "b" in 
otherwise. Thus, each no null zone represents the presence of an intensity change 
detected by the scale that gives the best response. 

Fig. 4 shows an example of the process for the detection of intensity changes in a 
discrete range of spatial scales defined by the standard deviation • of the Gaussian. 
We can distinguish between transitions of high and low spatial frequencies that 
correspond to coarse and fine details, respectively. A total of five graphs are shown 
corresponding in consecutive order to: a) the intensity profile; b) multiscale 
differential profile obtained by combining the results of each of the filters according to 
the criterion of maximum response; c) and d) differential profiles obtained by 
convolving the profile of intensities with filters of two different sizes: ff = 0.33 and 
3.0, respectively. Each value of the standard deviation define an operator of +3*G, +1 
pixels. We can see for the diffuse transitions how the response of the filter increases 
depending on its size, reaching a value very closely to the transition contrast for the 
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Fig. 4. Detection of intensity changes at multiple scales, a) Profile of intensifies; b) 
Multiscale differential profile; c) and d) Differential profiles at scales a=0.33 and 3.0. 

largest of the filters. On the contrary, for fine transitions of high spatial frequency the 
response from the filters is reduced since interference between adjacent transitions of 
different polarities appear, and the positions of the local maximum are displaced, 
giving rise to a possible dislocation of the edge points [18]. 

In the multiscale differential profile we can see how the transitions are accentuated 
by no-null zones except the transitions composed of several smaller transitions of the 
same polarity (staircase type) which perhaps give rise to only one peak or no-null zone 
depending of the largest scale value. In these cases, subtransitions can not be detected 
by analysing only the peaks of the multiscale differential profile. Therefore, an 
integration process of the information obtained at each individual scale is needed. 

2.3 Characterising Intensity Changes 

The intensity changes description consists of the extraction of a set of characteristics 
which is associated to each intensity change. According to Fig. 5, each no-null zone 
with a differential profile defines the spatial limits where the process of detection and 
characterisation of an intensity change at each scale is carried out. Each no-null zone 
or peak is characterised by the following attributes: the spatial limits of the transition 
(xi-xJ), the position of the edge point (xep), the grey level of the edge point (gep), the 
minimum grey level (groin), the contrast (con) and the tune level (tune). The 
transition contrast can be positive or negative, depending on whether or not it is a 
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Fig. 5. Characterisation of one intensity change. 

transition region from dark to light or conversely, respectively. The tune level is an 
attribute defined for each transition as the ratio between the local maximum of each 
gradient peak and the contrast of the transition. 

Next, in order to obtain a complete characterisation of the intensity changes an 
integration process is needed where the results of the characterisation process at each 
scale are combined in a convenient way allowing us to attack two problems: the 
detection of subtransitions in staircase type transitions and dislocation of the edge 
points at high scales. The integration of characteristics completes the characterisation 
of the detected intensity changes at multiscale differential profile by two basic actions: 
addition of a new attribute to the intensity changes and refinement of attributes by 
using the lowest scale in which the intensity change is detected. 

According to Fig. 6 transitions can be classified in two types: single and multiple. 
A transition is single when, at a lower scale, new transitions of the same polarity do 
not appear, and in the opposite case, it is said to be multiple. The multiple transitions 
are coded in such a way that they take into account, on the one hand, the coarse 
transition (father) detected at the multiscale differential profile, and on the other hand, 
the fine transitions (children) detected at the lowest scale in which it is detected. The 
type attribute is codified by a byte (BA) in which can be distinguished the first nibble 
(A) and the second nibble (B) giving rise to the following codification: Single 
Transition (BA=O0); Global Multiple Transition (BA=ln), where "n" is the number of 
local transitions and, Local Multiple Transition (BA =20). 

Once the transitions are classified the system is ready to generate the final 
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Fig. 6. Types of transitions, a) Single transitions and b) Multiple transitions. 
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description of the intensity changes according to the following way: if the transition is 
single then its final description will be taken from the lowest scale in which the 
intensity change has been detected, thus, we try to reduce the negative effects of the 
dislocation of the edges when the spatial scale is increased due to the interference of 
the adjacent transitions or the superimposition of various factors responsible for the 
intensity change, for instance, a change in reflectance and shadows. Otherwise, that is, 
if it is a multiple transition with "n" subtransitions, "l+n" characterisations will be 
generated: one characterisation for the global multiple transition detected at the 
multiscale profile and "n" characterisations for the local multiple transitions 
(subtransitions) detected at single scale. The global multiple transitions take their 
attributes from the characterisation at multiscale profile, while the local multiple 
transitions take their attributes from the characterisation at the lowest scale in which 
they have been detected. 

Finally, the intensity changes are represented by a data structure of N+I blocks 
where we distinguish between 1 head block and N data blocks. The head block 
supplies global information related to the description process applied to the horizontal 
or vertical scan image such as: number of intensity changes (nic), direction of 
exploration (dir) and, the system parameters that correspond to the minimum contrast 
(pcont) and the values of the low and high spatial scales (psl,ps2). The remaining 
blocks are the local attributes associated to each intensity changes which supply 
information related to the 1D spatial limits of the transitions (xi, x~, 2D position of the 
edge point in the image (col, row), grey level of the edge point (gep), minimum grey 
level (gmin), contrast (con), tune level (tune), type of transition (type) and selection 
mark (sel). 

ic[0].nic 1 ... n ic[i].xi 
ic[0].dir 0: Hor. l:Vert, ic[i].xf 
ic[0].pcont 0 ... 255 ic[i].col 
ic[0].psl 0.33 ... xx.yy ic[i].row 
ic[0].ps2 0.33 ... xx.yy ic[i].gep 

ic[i].[~nin 
ic[i].con 
ic[i].tune 
ic[i].type 

1 ... 512 
1 ... 512 
1 .. .512 
1 . . .512 
0 ... 255 
0 ... 255 
-255 ... +255 
0.0 ... 1.0 
BA 
0 0 -> Single Transition 
In  -> Global Multiple Transition 
20 ->Local " 

n = Number of Local Mul. Trans. 
ic[i].sel Selection mark 

Table 1. Representation of the local description of the intensity changes. 
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Fig. 7. The detection process applied to the intensities along a horizontal scan line in an 
image (row=340). 

18 0 20 .33 3.00 

1 1 1 1 340 128 32 192 80 0 1 
2 38 41 39 340 186 72 -152 75 0 1 
3 86 89 87 340 ii0 72 152 75 0 1 
4 105 107 106 340 184 104 -120 i00 0 1 
5 108 ii0 109 340 184 104 120 i00 0 1 
6 134 137 135 340 184 64 -160 75 0 1 
7 182 185 183 340 104 64 160 75 0 1 
8 230 233 231 340 182 56 -168 75 0 1 
9 278 281 279 340 98 56 168 75 0 1 

10 310 337 318 340 190 48 -176 75 12 -i 
ii 317 320 318 340 190 88 -136 75 20 1 
12 328 331 329 340 78 48 -40 75 20 1 
13 367 393 384 340 122 48 176 75 12 -I 
14 373 376 374 340 58 48 40 75 20 1 
15 383 386 384 340 122 88 136 75 20 1 
16 422 425 423 340 178 40 -184 75 0 1 
17 470 473 471 340 86 40 184 75 0 1 
18 512 512 512 340 128 32 -192 80 0 1 

Table 2. Attribute values of the intensity changes. 
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3 Experimental results 

We now look more closely at some of the results obtained by the proposed method for 
detecting and characterising intensity changes in order to obtain a multiple 
representation of them. Fig. 7a shows an intensity profile obtained from a horizontal 
scan line (row 340) of a synthetic image of 512x512 pixels where different transitions 
can be see. Fig. 7c, 7d show the results after applying the convolution processes with 
differential operators of different sizes meanwhile Fig. 7b, shows the combination of 
the low and high scales giving rise to the multiscale differential profile. The different 
attribute values after applying the characterisation and the integration processes are 
shown in the Table 2. 

The head block data tell us that eighteen intensity changes have been detected in 
the intensity profile by using the following system parameter values: contrast 
threshold (pcont=20), low scale (ps1=0.33) and high scale (ps2=3.00). The data 
blocks show the local attributes of each intensity change or the results of the 
description process where we can see that one artificial transition has been added to 
each extreme of the intensity profile in order to obtain a complete sequence of regions 
(background included). All transitions are single except two of them which are global 
multiple transitions where two local multiple transitions can be distinguished. 

Fig. 8 shows an original image of 512x512 pixels where we can see two types of 
entities: objects and background. Shadows and brightness can be distinguished due to 
an uneven background and poor illumination. The image has been scanned 
horizontally (Fig 9) and vertically (Fig. 10). Fig. 9a - 9b show two edge images which 
correspond to the horizontal edge detection at the scales a= 0.33, 3.0, respectively. In 
the same way, Fig. 10a - 10b show two edge images which correspond to the vertical 
edge detection. Low contrast intensity changes has been eliminated by thresholding. 
The threshold value defined by the system parameter pcont has been fixed at 20. Fig. 
9c and Fig. 10c show the result of combining the two edge images according to the 
proposed method which was described in section 2.2. Only the position attribute of 
edges (column and row) has been visualised. 

On the other hand, following the hypothesis that intensity changes originate in the 
boundaries of the entities of interest, the extraction and characterisation of regions is 
carried out by analysing the sequence of intensity changes and by associating a set of 
attributes to each region. Given the one-dimensional character of the proposed 
method, for each exploration direction of the image, we obtain a new representation of 
the image where the primitive elements are linear regions in the form of segments. 
These dements give rise to a new representation of the image in which the primitive 
elements can be selected and/or combined in order to obtain significant segmented 
entities. It should be noted that in non-controlled environments where the general 
illumination conditions are not uniform, the intensity changes produced in the image 
are due to multiple factors and not all of them correspond to the physical boundaries 
of the objects. In these situations, at a gray-tonality level, it is very difficult to 
establish the criteria for making decisions as to whether a region corresponds to an 
object or not. 
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Fig. 9. Local description of the intensity changes along a horizontal scan image, a), b) 
Edges images obtained at scales ~=0.33 and 3.0 and minimum contrast=20, respectively; c) 

Combination of edge information and d) Horizontal regions. 
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Fig. 10. Local description of the intensity changes along a vertical scan image, a), b) Edges 
images obtained at scales ff=0.33 and 3.0 and minimum contrast=20, respectively; c) 

Combination of edge information and d)Vertical regions. 
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Fig. 9d and 10d show a representation of gray level attribute of regions which were 
obtained from the multiple representation of the intensity changes by other processes 
not discussed in this work. With this in mind the segmented entities can be obtained 
from the multiple representation of the regions where other higher level processes act 
to obtain the entities of interest in agreement with certain strategies (decision rules) 
which can be defined based on previous knowledge or heuristic information of the 
entities which we want to segment. 

4 Conclusions 

This new image segmentation method is based on a multiple representation scheme, 
where multiple representation is obtained by expansion processes which act at the 
lowest levels of the vision system in order to produce a dimensional increase of the 
sensorial process. In this way, a wide variety of decision clues are accentuated giving 
rise to a multiple representation in which reduction processes based on decision rules 
act in order to reduce the syntactic information and increase the semantic information. 

We have described the processes to obtain the multiple representation of the 
intensity changes which the most outstanding are: intensity changes detection at 
multiple scales, information combination, characterisation processes at each single 
scale and, characteristics integration for obtaining a final description of the intensity 
changes. After applying these processes a new representation of the original image is 
obtained which is a complete representation in the sense that the original image can be 
recovered from the attributes associated to each intensity changes (primitive elements) 
without an important lost of information. On the other hand, it constitutes the starting 
point to generate a multiple representation of regions (no discussed in this paper) in 
which a set of decision rules based on previous knowledge or heuristic information 
can be laid down so that the segmentation results can be obtained on a semantic basis. 
The method has been tested successfully in real images obtained by a TV camera in 
applications of artificial vision oriented to the automatic objects manipulation by 
robots. 
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