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OCCLUSION POINTS PROPAGATION GEODESIC DISTANCE TRANSFORMATION
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ABSTRACT

We propose a new approach to compute geodesic distance
transformations in arbitrary 2D and 3D domains. The dis-
tance transformation proposed here is robust and has proved
to have a computational complexity linear in the domain
size. Our scheme is based on a new technique which we
call occlusion points propagation, and with a higher accu-
racy than other geodesic distance transformations proposed
before. We validate the algorithm with a set of synthetic
domains, and we also make comparisons with two similar
algorithms calledBd-geodesic distance transformation and
Bd-geodesic distance transformation with circular propaga-
tion.

1. INTRODUCTION

The distance transformation (DT) of a binary image with
object and non object pixels, assign to every pixel, the dis-
tance to the nearest object pixel. There are several imple-
mentations for computing the DT efficiently, most of them
taking advantage of the fact that distances vary smoothly in
the domain, in order to deduce the value of the map in one
pixel from the values of the map around it. Thus many DT
algorithms are based on mask propagations, like in Rosen-
feld [1] and Borgefors [2]. In the paper presented by Verwer
[3], a new approach is proposed, which consists of an or-
dered propagation, from the objects to the rest of the image.
With this idea, several DT algorithms have been developed,
for example see Ragnemalm [4]. In the work presented by
Piper et al. [5], the DT computation is extended to non con-
vex domains using a geodesic metric. In this paper we pro-
pose a new DT algorithm to compute distance maps in ar-
bitrary 2D and 3D convex and non convex domains. With
this scheme, distance maps can be computed even in do-
mains with obstacles and corners, using a geodesic metric
different from the usual Euclidean metric. The most inter-
esting approach proposed before is that of Cuisenaire [6],

The first author is funded by a FPU grant from the University of Las
Palmas de Gran Canaria. This work has been partially supported by the
Spanish Ministry of Science and Technology and European Commission,
co-funded grant TIC-2001-38008-C02-01

who proposed an ordered propagation geodesic DT called
Bd-geodesic DT, based on aBd-geodesic metric. We will
implement a new metric that makes our scheme more effi-
cient and accurate. Our method is calledocclusion points
propagation geodesic distance transformation (OPPGDT),
whose key feature is the detection of occlusion points in a
domain from a selected point of view. This makes it possi-
ble to know where a corner or obstacle is located, in order
to start a propagation front from there.

2. GEODESIC DISTANCE TRANSFORMATION
AND OCCLUSION POINTS

The general definition of geodesic distance is as follows

Definition 1 SupposeP = {p1, p2, ..., pn} is a path in a
connected domain between pixelsp1 and pn, i.e. pi and
pi+1 are connected neighbors fori ∈ {1, 2, ..., n − 1} and
pi belongs to the domain for alli. The geodesic distance
between two pixelsp1 andpn is defined as the length of the
shortest path fromp1 to pn where the path lengthl(P ) is
defined as

l(P ) =
n−1∑
i=1

dN (pi, pi+1) (1)

i.e., the sum of the neighbor distancesdN between adjacent
points in the path.

The simplest implementation of this metric is the geode-
sic version of the city block metric used in [5]. Some other
metrics, such as the Chamfer metric, have been used for ex-
ample in [3, 5], but they are coarse approximations to the
geodesic version of the Euclidean DT. A more recent work
presented by Cuisenaire [7] proposes a different definition
of geodesic distance, which he called theBd-geodesic dis-
tance, such that the distance between two pixels~p and~q is
the Euclidean distance if~q belongs to a ballBd centered at~p
and radiusd, as far as there is a path in the domain between
both points. Note that for non convex domains the segment
providing the Euclidean distance is not always completely
included in the domain.

0-7803-7750-8/03/$17.00 ©2003 IEEE. ICIP 2003



In this paper we propose to use a new definition of geode-
sic distance, that we will call theocclusion points geodesic
distance. First of all we start defining the occlusion points.

Definition 2 We define an occlusion pointr with respect to
s, in a domainM, as the nearest point froms such that
givenε > 0, it does not exist a straight path included inM
that joinsr ands, but there exists a straight path included
in M, betweens and a pointx such thatx ∈ Bε(r), where
Bε(r) is a ball centered atr of radiusε.

The discretization of this definition is straightforward
changing the ballBε(r) by the two dimensional neighbor-
hood of size 8:N8(r). With this definition, we can define
the new geodesic distance as follows

Definition 3 We define the occlusion points geodesic dis-
tance betweenp1 and pn, in a domainM as the sum of
distances of equation 1, if the pathP = {p1, p2, ..., pn}
is such thatpi are occlusion points with respect topi−1

∀ i ∈ {2, ..., n − 1}, and n > 2 or if p1 is directly con-
nected withp2 with a straight path included inM if n = 2,
and the distancesdN (pi, pi+1) are Euclidean.

This definition means that the geodesic path between a
pointp1 to the pointpn, is a straight line if they are visually
connected in the domain, or a chain of segments through
the occlusion points if they are not visually connected. The
geodesic path is like a tensed string that joinsp1 andpn and
restricted to the domain, see fig 1.

AB AB

occlusion points

Fig. 1. Shortest path for the OPPGDT (left), and shortest
path for theBd-geodesic DT (right) between points A and
B in a two dimensional non convex domain

The key point in the algorithm described here is how to
find the occlusion points, through which the geodesic path
goes on.

One efficient algorithm to implement usual geodesic dis-
tance transformations is that of Verwer et al. [3]. It scans
the pixels in order of increasing distance by bucket sort-
ing the pixels in the propagation front. In our method we
propagate the distances to the nearest object as well as its
coordinates, until the whole domain is visited. Propaga-
tions are performed by means of morphological dilations
that, at each step increase in one unit the distance to the
starting object, (distance zero). For this purpose, we use

two lists: list1, stores the elements that are currently being
propagated, andlist2 stores the elements to be propagated
in the next dilation. For this reason, when we are dilating
the elements corresponding to distanced1, we expect to find
elements placed at a distanced2 > d1, so if we find a point
at distanced2 ≤ d1, there is an anomaly corresponding to
an obstacle or corner, i.e. an occlusion point appears. This
idea of searching for an anomaly in the propagation front,
in order to find an occlusion point, can be addressed using
the following property.

Property 1 LetPd(o) = {p|d − 0.5 < diste(p, o) ≤ d +
0.5; d ∈ IN} be the set of pixels whose centers are at an Eu-
clidean distanced± 0.5 from an objecto in a 2D grid, and
let S be the dilation ofPd(o). The minimum structure ele-
ment of the dilation ofPd(o) in a convex and free obstacle
domain, such thatPd+1(o) ⊂ S, is N8.

Proof. In order to obtain the setPd+1(o) by means of
a dilation, it is necessary to dilate with a structure element
that completely contains a ball of radius 1. The minimum
structure element that accomplishes this isN8.

This property holds in a 3D grid for a 26 sized neigh-
borhood (N26) and it is necessary to find an occlusion point
with respect to an object in a non convex domain.

3. THE ALGORITHM

For every pixel~p in the domain we store its coordinates
~p = (px, py), the distance to the initial object from the near-
est occlusion point it comes from,dobj(~p), and the coordi-
nates of the initial object or the nearest occlusion point it
comes from~robj(~p) = (xobj(~p), yobj(~p)). The algorithm
initializes the distance mapD to −1, and puts the object
pointsO in list1. Then it starts to extract and dilate consec-
utively the elements oflist1, putting the new reached pixels
in list2. When thelist1 is completely empty we swaplist1
and list2 and repeat the process until both lists are empty,
i.e. until all the pixels of the domain are processed.

The occlusion points appear when the propagation front
reaches obstacles, or corners in the domain. We detect such
occlusion points by means ofproperty 1. If we dilate a pixel
~p with N8, that belongs to the propagation front at distance
d, and reach a pixel~q at distance less or equal thand, then
property 1is not accomplished, which means that the do-
main is non convex, so the pixel~q is an occlusion point.
In our method, once we detect an occlusion point, it au-
tomatically becomes a new object and a new propagation
front starts from it. This is carried out propagating the oc-
clusion point coordinates instead of the initial object coor-
dinates from this point. For this reason, when a new pixel
~p is reached by a pixel~q, the new distance is computed as
follows

dnew(~p) = diste(~p, robj(~q)) + dobj(~q) (2)



the Euclidean distance from~p to the nearest occlusion point
of ~q, plus the distance from that occlusion point, to the ini-
tial object. For this reason, for every pixel, we propagate its
nearest occlusion point coordinates, and the distance from
this occlusion point to the initial object. The pseudo-code is
as follows

Algorithm 1 Occlusion points propagation geodesic dis-
tance transformation

Input: N object pointsO(i) from where we want to com-
pute the geodesic DT, and the 2-dimensional domainM
where the DT is restricted.
Output: the geodesic distance transformationD from the
objects restricted toM.

Initialize D anddobj , for every pixel and put objects inlist1
d = 0
while (list1 is not empty and list2 is not empty)do

while (list1 is not empty)do
get(~p, dobj(~p), ~robj(~p)) from list1
propagate(~p, dobj(~p), ~robj(~p), d)

end while
d = d + 1
swap(list1,list2)
if (list-aux is not empty)

append list-aux to list1
empty list-aux

end if
end while
procedurepropagate(~p, dobj(~p), ~robj(~p), d)

for all ~n ∈ N8 do
if (~p + ~n ∈M andD(~p + ~n) = −1)

dnew = diste(~p + ~n,~robj(~p)) + dobj(~p)
dint = round(dnew)
if (dint = d + 1)

put (~p + ~n, dobj(~p), ~robj(~p)) in list2
D(~p + ~n) = dnew

end if
if (dint ≤ d) (occlusion point appears)

put (~p + ~n, dnew, ~p) in list-aux
dobj(~p) = dnew

D(~p + ~n) = dnew + diste(~p + ~n, ~p)
end if

end if
end for

end procedure

Notice the importance of dilating withN8, if we dilate with
N4, we are not able to find the occlusion points in the prop-
agation front, due toproperty 1.

4. COMPUTATIONAL COMPLEXITY AND
MEMORY LOAD

The computational complexity comes from the number of
distance calculations in this algorithm. We need to calcu-

late a new distance every time a new pixel is reached, i.e. the
number of distance computations ism, the number of pix-
els in the domainM. Thus the algorithm will have a com-
putational complexity of orderO(m). There are a number
of additional distance calculations corresponding to the ap-
pearance of occlusion points, but they are, in general, neg-
ligible with respect tom. The computational complexity of
our approach is of the same order than theBd-geodesic DT
by circular propagation, but our approach is a little bit faster
due to the number of comparisons made at every pixel. The
number of comparisons for our approach is four for every
pixel, and the number of comparisons by theBd-geodesic
DT by circular propagation is six for every new pixel. Both
algorithms are one order of magnitude better than theBd-
geodesic DT.

The memory load is almost the same for both algorithms
Bd-geodesic DT by circular propagation and OPPGDT, be-
cause both of them store for every pixel two vectors of in-
tegers and a float distance, and they manage two lists for
the propagation front. In the case of theBd-geodesic DT,
the pixel storage is also the same, but the memory load is
higher because it manages a number of buckets equal to the
radius of the ballBd, and it is necessary to allocate more
memory for the bucket sorting propagation.

5. RESULTS

We have tested the algorithm in a 2D synthetic non con-
vex domain, embedded in a 256x256 image with 22214
pixels and two up-sampled domains, one of size 512x512,
with a domain size of 88856 pixels, and the other of size
1024x1024 with a domain size of 355424 pixels. Figure 3
a) and b) shows two geodesic DT for a single object in the
2D synthetic domain, represented with a cyclic colormap
to give a better visualization of the distance transforma-
tion. Every iso-distances curve have a different color than
its neighbors. Figure 3 c) and d) shows the same but us-
ing a grayscale colormap, where low distances are displayed
darker and high distances lighter.

Table 1 shows execution times for the three geodesic
DT algorithms, and for different domain sizes. The execu-
tion times has been measured in a SUN-Ultra 10 worksta-
tion with an Ultra-SPARC II 440 MHz processor and 512
MB RAM. Notice that the first two schemes have similar
execution times, but our method is always faster, and the
last scheme is always an order of magnitude slower than the
others. Notice also that the times in the first two schemes
increase linearly with the number of points in the domain,
showing a computational complexity ofO(m) for both al-
gorithms.

We show in figure 2 the maximum distance reached by
theBd-geodesic DT for different ball sizes, compared with
the distance reached by the occlusion points geodesic DT,
in the 2D synthetic domain of figure 3. Notice that the max-



geodesic DT number of pixels CPU time

occlusion points 22214 0.0678
propagation 88856 0.2740

355424 1.1908
Bd by circular 22214 0.0778
propagation 88856 0.3178

355424 1.3782
22214 0.3755

Bd 88856 4.2081
355424 39.3589

Table 1. Execution times in seconds for the three different
geodesic DT algorithms, in the three experiments carried
out

imum distance for our algorithm is always lower. We use
ball size values up to 20 because higher values are not a
good choice in order to follow the obstacles’ shape.
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Fig. 2. Maximum distance reached vs ball radius (d) in the
Bd-geodesic DT, compared with maximum distance in the
OPPGDT

6. CONCLUSIONS

We have proposed here a new geodesic DT algorithm which
is faster, and more accurate than any other geodesic DT pro-
posed previously, such as theBd-geodesic DT, which de-
pends on the ball size parameterd, unlike our algorithm
which does not depend on any parameter. The occlusion
points paradigm allows our geodesic DT to work in con-
nected convex and non convex 2D and 3D domains. When
the domain is convex, our DT behaves like an usual Eu-
clidean DT, and is more accurate than theBd geodesic DT
because theBd metric have more errors in obstacle free do-
mains see [7].

We have demonstrated that our geodesic metric is better
than theBd geodesic metric, as shown in figure 2 where the
maximum distance reached by our method is always lower
than theBd-geodesic DT, for reasonable values ofd, where
the DT can still follows the domain’s shape.

The computational complexity of our approach is of or-
derO(m), which is one order of magnitude better than the

(a) (b)

(c) (d)

Fig. 3. OPPGDT coded with a cyclic colormap (a) and with
a grayscale map (c),Bd-geodesic DT coded with a cyclic
colormap, ford = 6 (b), and with a grayscale map, (d)

Bd-geodesic DT, and is slightly better than theBd-geodesic
DT by circular propagation, because we perform two less
comparison operations per pixel than theBd-geodesic DT
by circular propagation.
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