
 SIAM J. APPL. MATH. ? 1997 Society for Industrial and Applied Mathematics
 Vol. 57, No. 1, pp. 153-175, February 1997 008

 IMAGE QUANTIZATION USING REACTION-DIFFUSION
 EQUATIONS*

 LUIS ALVAREZt AND JULIO ESCLARINt

 Abstract. In this paper we present an image quantization model based on a reaction-diffusion
 partial differential equation. The quantized image is given by the asymptotic state of this equation.
 Existence and uniqueness of the solution are proved in the framework of viscosity solutions. We
 introduce an L?? stable algorithm in order to compute numerically the solution of the equation, and
 some experimental results are shown. A new energy functional based on the classical Lloyd method
 is used to compute the quantizer codewords.
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 1. Introduction. In recent years, partial differential equations (PDEs) have
 become solid and useful tools for image processing. We present new techniques based
 on PDEs for image processing and more specifically for image quantization. We
 consider an image as any bounded function u: JR2 - R. A quantizer Qs is a

 rule to associate two finite sets with u: {f Uk}k=1,...,S, which represents the quantizer
 codewords, and {tk}k=1,..s+i, which represents the quantizer separators, satisfying

 tl < Ul < t2 < U-- < us < tS+ -

 Each quantizer Qs then generates a quantized image of u by replacing any value

 of the image in the interval [tk, tk+l) by Uk. In what follows we will consider ti and
 tS+i to be fixed a priori, following the bounds of the image u.

 In this paper we address two problems related to image quantization. The first

 one is the choice of the quantizer Qs for a given number of codeword levels S. The
 second one is to introduce a denoising procedure which acts at the same time as the

 quantization procedure.
 The classical method (see Lloyd [15]) of choosing the quantizer Qs consists of

 minimizing the average quadratic error. Let H(s) be the probability distribution
 associated to the image u given by

 H(s) = P{u(x, y) < s}.

 We consider that u is periodic with period [a, b) x [c, d), which represents the original
 image domain; then P can be considered as the Lebesgue measure on [a, b) x [c, d).
 We notice that the histogram h(s) of u is given by h(s) = H'(s). The Lloyd quantizer

 Qs minimizes the quadratic energy:

 S tk+l

 (1) E(Qs) = Sj k - Uk)2 dH(s).
 k=l tk
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 154 LUIS ALVAREZ AND JULIO ESCLARIN

 In the framework of image processing, it is not desirable that two levels tk, tk+1 or

 Uk, Uk+l be too close to each other because perceptually they represent the same level.
 We introduce two terms in the Lloyd energy in order to penalize quantization levels

 for being too close. We will use in our experiments the quantizer Qs which minimizes

 the energy

 (2) E(Qs) = E( (s - Uk)2dH(s) + t+t + C (-_?t-+- -Uk)),

 where L, C are positive constants. We will use dynamic programming techniques to

 compute the minimum Qs of the above energy.

 The second and main step in our quantization method is to smooth out the

 noise in the original image. This will be done by solving the initial value problem

 for PDEs of the reaction-diffusion type. Before explaining this procedure, let us

 observe that there is a way of generating a quantized image via solving an ordinary

 differential equation. Let f E Co(R) be a function satisfying that f(s) = 0 if and only
 if s = t1,ul,... ,usIts+i and that 9f(tk) > 0 and '9f (Uk) < 0 for any k. We solve
 the initial value problem for the ordinary differential equation

 ut = f(u)

 with the original image u0 (x, y) as the initial datum. That is, at the end of the process
 of solving the initial value problem for the above ordinary differential equation the gray

 levels of the image are reduced to one of the values ul, . . . , us, which are attractors of
 the above ordinary differential equation, and the values tl, . . . , ts+l among the zeros
 of f(u) act as separator levels in the process. Of course, this method does not take
 care of reducing any noise in the image.

 In place of the ordinary differential equation in this simple method, as mentioned
 above, our model utilizes a PDE of the reaction-diffusion type. We make use of the

 diffusion effect of the PDE as a way of reducing the noise in the data of the image.
 The diffusion effect is considered to act on the data as a regularization or homoge-

 nization. In other words, we require that the gray levels of neighbor pixels verify a

 kind of homogeneity, and this is realized via solving the PDE in our model. This kind

 of homogenization of data is carried out by means of filtering. The linear filtering is
 usually done by convolution with Gaussian kernels of increasing variance, as proposed

 in [12], [16], [20]. Koenderink [13] noticed that in each scale the convolution of a signal
 with a Gaussian is equivalent to the solution of the heat equation, with the signal as
 the initial datum.

 This datum being called uo, the following images are obtained by solving the heat
 equation

 au (X, y, t) Au(, t ) t) in R2 X [0, +?o[,
 at

 u(x, y, 0) = Uo (X, y) in R2.

 The resolution of this equation for an initial datum with bounded quadratic norm

 is u(t, x, y) = Gt * uo, where

 Gt(x,y)= Ct-exp ( +2 12))

 is the Gaussian function; here t represents a scale parameter.
 Along the scales, the linearity of the Laplacian operator produces a displacement

 or loss of the edges in the regions that are present in the image, which makes it
 necessary to find nonlinear operators.
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 IMAGE QUANTIZATION AND PDE 155

 Perona and Malik [18] have proposed that the Laplacian operator should be re-
 placed by the operator

 div(g( JVuJJ)Vu),

 and they use the equation

 ut - div(g(|IVu|j)Vu)

 as a model, where g(.) is a positive nonincreasing function.
 With this model they tried to penalize diffusion where the gradient is large. How-

 ever, this model presents some disadvantages: the first one is that it does not work
 properly when noise is present (noise remains). The second disadvantage is that from
 a theoretical point of view, the equation is well posed only if sg(s) is a nondecreasing
 function.

 Later Alvarez, Lions, and Morel [2] proposed a model based on the equation of
 the mean curvature flow

 Ut = g(IG * Vul) lfVulf div( Vu)

 This equation produces a diffusion in the direction of the edges which corresponds

 to the orthogonal direction to the gradient. It does not produce a blurring effect in
 the image as the previous equations did because it does not alter the contrast between
 different objects present in the image.

 In a similar way, Cottet and Germain [7] have introduced a model based on
 reaction-diffusion equations. The idea behind this model consists of combining the

 diffusion for noise filtration and the reaction to improve the contrast. Its purpose is
 to describe a model in which a processed image can be seen as the asymptotic state
 of the resolution of the mathematical model

 au - cr2 div([A6(u)][Vu]) = (u) in Q,

 where Q is a bounded domain in R2, u c L2(Q), and f(x) E C1 satisfies

 f(?I) = 0, xf(x) > 0 for x E (-1, 0) U (0, 1).

 The nonlinear operator A, is defined by the 2 x 2 matrix

 AE (u)ij 11= U1 + E21

 x2~~~~~~~~~~~~ where 0 =,0 and 92- =- a .Hence, the term ?2 is used to avoid singularities when

 JVuJll 0 O in the derivatives of this matrix. A, projects vectors onto the orthogonal
 complement of the gradient.

 The selection of the e parameter poses some problems: if E tends to zero, u,
 tends to u, and as a consequence there is no diffusion since the term of diffusion
 becomes zero. On the other hand, if E is large a distortion is introduced. Moreover,
 the geometrical interpretation of the operator is not clear.

 Of course, there are a lot of ways to define nonlinear filtering using PDEs. In [1]

 and [3], the reader can find a complete study of the applications of PDEs to multiscale
 analysis theory using an axiomatic approach.
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 156 LUIS ALVAREZ AND JULIO ESCLARIN

 The method proposed in this paper is also based on reaction-diffusion equations.

 In particular, we propose the following equation:

 _9_ - g(Iu * VGI)IIVuII div K jVu^ - f)(u) = 0 in [0, +oo[xR1lN,
 3) at lvl

 u(O,x) = uo(x),

 where g(x) > 0 is a nonincreasing function satisfying g(O) = 1, G is a convolution
 kernel (for example, a Gaussian function), and f(u) is a Lipschitz function with a

 finite number of zeros.

 The interpretation of the terms in the equation is as follows:

 (a) The term

 IIVuIIdiv Vu) = _ V2U(VU, VU)

 represents an effect of degenerate diffusion that diffuses u in the orthogonal direction

 to the gradient Vu and does not diffuse in any other direction. The role of this
 degenerate term of diffusion is to regularize u on both sides of an edge with the
 minimum loss of the edge itself (an edge is defined as a line along which the gradient
 is large).

 (b) The term g(IG * Vul) is used for "enhancement" of the edges. It certainly
 controls diffusion speed: if Vu has a small mean in a neighborhood of a point x, this

 point x is considered as an interior point of a smooth region of the image and the

 diffusion is therefore strong. If Vu has a large mean value in the neighborhood of x,
 x is considered as an edge point and the diffusion speed is lowered, since g(s) is small
 for large s.

 (c) The function f(s) determines the asymptotic state of the equation using the
 quantizer Qs which minimizes the energy (2), as we have explained above.

 Using equation (3), we introduce a smoothing procedure in the quantization rule.
 So the asymptotic solution of this equation when t tends to oo represents a smooth
 quantization of the original picture.

 The paper is organized as follows. In section 2 the mathematical validation of our

 model is presented. We show existence and uniqueness of the solution of equation (3)
 in the framework of viscosity solution theory. In section 3 we develop the numerical

 analysis of our model. We develop an algorithm to compute the global minimum Qs of
 the functional energy (2) using dynamic programming techniques and a discretization
 scheme for equation (3). We also show the L? stability of the scheme. Finally, in
 section 4, we give some experimental results.

 2. Mathematical model analysis. In what follows we will use the notation

 aiau = ui and Oijuau a2 = uij
 The mathematical model that we propose is the following:

 &u - 9(u * VG) : aijj(Vu)0jju - f(u) = 0 in [O, +oo[xIRN, (4) at i
 u(O,x) = uo(x),

 where

 (1) g92 (NR , Et) is Lipschitz, g(p) > 0 Vp E R;

 (2) DeG c L1(R N) Vlal < 2;
 (3) ?0j aij (p) i j > O Vp E N \{O}N , e ERN, aij =aji;
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 IMAGE QUANTIZATION AND PDE 157

 (4) aii are continuous and bounded on IRN \ {o};
 (5) f(x) E Co(R), f'(x) E L??(R) and an interval [a, b] exists such that

 f(x) > 0 if x < a and f(x) < 0 if x > b.

 We begin with a brief summary of the definition of viscosity solutions of (4)
 on IRN.

 Let u be in C([0, T] xIRN) for some T in ]0, +01[. Then, u is a viscosity subsolution
 of (4) if for all o1 in C2 ([0, T] x IRN) the following condition holds at any point (to, xo)
 in ]0, T] x IRN, which is a local maximum point of (u-

 a (to, x0) - g(u * VG(to, xo)) S aij (V1(to, xo))i3JO(to, xo) - f (u(to, xo)) < 0 at ii

 if V (to, xo) 70 O,

 04 (to, xo) - g(u * VG(to, xo)) lim,sup 5 aij(p)ijOD(to, xo) - f(u(to, xo)) < 0
 at p--+o

 if V4>(to, xo) - 0.

 We define a viscosity supersolution in a similar manner by replacing "local max-
 imum point" by "local minimum point," "<" by ">," and "limsup" by "liminf."
 Finally, a viscosity solution is a function which is a subsolution and a supersolution.
 In what follows, we will suppose that there exists h = (hi,... , hN) such that

 (5) uo(x+ (00 *... ,hk,-. ,O))=uo(x) VxERN and k = 0,1,... ,N.

 It means that uo is a periodic function.
 LEMMA 2.1. Let u be a viscosity solution of (4) satisfying (5). Then for any t > 0

 and x E R N

 min{inf Iuo , a} < u(t, x) < max{sup Iuo X b}

 Proof. Fix T > 0. We will show that the above inequality holds for (t, x) E
 [0, T] x RN. Note that the periodicity assumption on u guarantees that u has a
 maximum over [0, T] x RN.

 Let (to, xo) be a maximum point of u(t, x). Let us suppose that to > 0. In
 the viscosity subsolution definition, we take =- 0, and therefore u - o1 has a local
 maximum at the point (to, xo). So

 -f(u(to,xo)) < 0 =?> f(u(to,xo)) > 0 =?> u(to,xo) < b.

 By repeating the same argument with a viscosity supersolution, if (to, xo) is a
 local minimum of u - we obtain

 -f(u(to,xo)) > 0 =,. f(u(to,xo)) < 0 =z?> a < u(to,xo).

 If to = 0 we have

 inf luoI < u(x, 0) < sup luo ;

 then joining together both inequalities we have

 min{inf luo l,a} < u(x, t) < max{sup luo l,b}.
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 158 LUIS ALVAREZ AND JULIO ESCLARIN

 THEOREM 2.2. Let uo be Lipschitz on IRN.
 (i) Equation (4) has a unique viscosity solution u in C([0, T] x RN)n

 L? (0, T; Wl , (IRN)) for any T < oo.

 (ii) Let u E C([0, T] x RN)nL`?(0, T; Wl',`(IRN)), v E C([0oo) x RN) be viscosity
 solutions of problem (4) satisfying (5) with uo, vo as initial data. Then for each
 T E [0, +oo) there exists a constant K which depends only on l%uoHIW1,o ,IIVOIILOO and
 on the Lipschitz constant of u (and also on T) such that

 (6) sup pu(t,) v(t, )ILoo(iN) < K|uo - VOIIL?(pN). O<t<T

 To prove the theorem we shall use the techniques of viscosity solutions theory
 [2], [4], [8], [9], [10], and [19]. We shall start by proving the result of uniqueness
 (inequality (6)). In order to do that, we shall study some properties of the maximum
 point (to, xo, yo) of the function

 (7) u(t, x)-v(t,y) - At t E [0, T], x, y E R , T, E, A ]0, +[.
 46

 Notice that since u, v E C([0, oo[xIRN) are periodic functions, such a maximum point
 (to, xo, yo) is always attained.

 LEMMA 2.3. Let (to, xoI yo) be a maximum point of (7) and let L be the Lipschitz
 constant of u. Then

 IXO - Yo I < (4EL) 3.

 Proof U(t _V)x v(tol yo)I_ xo_oI4 Ato > u(to, yo)-v(to, yo)-Ato { Ixo oYI <
 u(to,xo)-u(to,yo)I < L Io-yoK-y xo-YoI < (4EL)3 U

 LEMMA 2.4. Let (to, xo, yo) be a maximuTm point of (7). For all 6 > 0 there exists

 M > 0 s>uch that if 6 = (6 SUPIRNX[O,T] u I- 3 and A = M SUPRNX[O,T] u-vl then
 the maximum point of (7) is obtained for to = 0.

 Proof. First let us suppose that to > 0. Using the proof of the uniqueness and
 existence theorem of [9] we find for all A, At > 0 real numbers c, d, and two (N x N)
 symmetric matrices X, Y such that

 c-d = A,

 (8) ( -Y)-(-A - MA2 A + [A2)

 c-g(u * VG)(to,xo) Eaij (E-6xo -yo12(xo -yo))Xi; -f(u(to,xo)) < O,

 (9) ij
 d-g(v * VG)(to,yo) E ai(6j xoE -y0j2(x -yo))Yi -f(v(to,Yo)) > O?

 i,j

 where

 A = - xo-yo 1Id +- (xo -yo) (xo- Yo)
 C C

 and

 A2 14xo -yO|4Id + 8 (Xo yo) 0 (Xo_ o). E21xo Yo -Ejxo - Yo~(0-o (0 Y)
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 IMAGE QUANTIZATION AND PDE 159

 Now we shall demonstrate that if we suppose

 A>Lf sup lu-VI,
 N X[0,T]

 then xo =& yo where Lf is the Lipschitz constant of f in the interval,

 [min{a, inf Iuol, inf IvoI}, max{b, sup Iuo , sup voI}].

 By Lemma 2.1 we have that

 min{a, inf luol, inf vol} < u, v < max{b, sup luol, sup Ivol}.

 If xo = yo then A - 0, which means that X < 0 and Y > 0. Then from (9) we
 obtain

 c-f (u(to, Xo)) < 0,

 d - f(v(to, yo)) > 0

 and therefore

 A c c-d < f (u(to,xo)) -f (v(to, yo)) < Lf sup u-VI.
 pNx[O,T]

 Hence if

 A>Lf sup u-vV
 pN X [0,T]

 then

 xo hYo

 If we put At = xo - yo1-2 in (8), we obtain

 ( -Y) -E (-B B)'

 where B is Ixo - yoj2Id + 5(xo - yo) 0 (xo - yo).
 Let A be the n x n matrix given by aij (6- IXO_yo-2(xo - yo)); then A > 0.
 Let g9 = g(u * VG)(to, xo) and 92= g(v * VG)(to, yo).
 Now we shall prove for the (2n x 2n) matrix

 r ( mgA Agg2A

 Vg g2A g2A
 that F > 0: let (, 97 E JR and compute that

 ) IF(T)= gi '(Ae + 2glg2A t(7 + 9g2 t97A97 ( gi + 7g/2 )A( gi + g27

 Therefore, since A > 0 we have that F > 0. If we multiply (10) by F and take the
 trace of the result, we have

 91 I aSjj- 92 5 aijr/ij < 2E-7 (g, - 2 gig2 + 92) tr(AB)
 i,j i,j

 < 2? 1 ( gi- g2) 5 aijbij < 2? (Vg-l 2) COIXO - Yo12
 i,j

 for a certain Co which depends only on (ajj)1<i,j<N-
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 160 LUIS ALVAREZ AND JULIO ESCLARIN

 Then, taking into account (9) and that A = c - d, we have

 A < 91 E ajjj- 92 S aijrij - (f (u) - f(V))
 (11) i,2 X,i

 < 2 06-Co ( g- g2)2 XO_y02 + Lf sup ju-vl.
 [O,T] XRN

 Let us see an estimation of ( gi - Vg).
 Since

 gI- =g g(u*VG)(to,xo)-g(v*VG)(to,yO)

 and g is Lipschitz, we have

 (/gi - g2) < Lg I(u *VG) (to, xo) - (v * VG) (to, Yo) I

 where Lg is the Lipschitz constant of .
 In the inequality

 (u * VG)(to, xo) - (v * VG)(to, Yo)

 ?< (u* VG)(toIxo) - (u* VG)(toIyo)I + I(u* VG)(toIyo) - (v *VG)(to,yo)

 we see

 (u * VG)(to, xo) - (u * VG)(to, Yo)

 I (u(to, xo -z) -u(to, yo -z)) (VG)(z) dzl
 N

 < Llxo - Yol j(VG)(z)l dz < L CGlXO - Yol

 and

 j(u * VG)(to,yo) - (v * VG)(to, yo)

 = (u (to, Yo -z) -v(to, yo -z)) (VG) (z) dz N

 < sup iX- VI J(VG)(z)ldz<CG sup lu-vl,
 [O,T]XRN R [O,T] XRN

 where CG fRN I(VG)(z)I dz < +oo.
 Therefore, ( g- - Vg) is estimated from above by

 C2( sup lu - vI + Ixo - Yol
 [o,T] XRN

 where C2 depends only on g, the Lipschitz constant of u, fR I (VG) (z) Idz, and
 SUPRN X[0, T] Ju-vv.

 We can deduce from (11) that

 A < C sup u -v)2 VI 2? )Lf supIxo-VI,
 [O,T] XIRN / [o,T] XIRN
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 IMAGE QUANTIZATION AND PDE 161

 where C = 2CoL2C2. From Lemma 2.3 we can conclude the following:

 A < 33(IIu-vII (OT)63 +c3) +LfIlu-vHL(o,T),

 where C3 = max((4L) -, (4L) 3 )C.

 Without loss of generality, we can suppose that sup[O,T].XRN U- v > 0 and take

 E;3 = 6|u - V|IL??(O,T)-

 We obtain

 A < (Lf + C3 (6 + )iu - VIILoL(O,T).

 Therefore if we take M = Lf + C3(8 + 1) + 1 and A = MIIu - VILOo(O,T) we have a
 contradiction and thus to = 0. [

 LEMMA 2.5. If the function (7) attains a maximum at a point (to,xo,o) with
 to = 0, then

 IIU - V|ILo(o,T) ' |UO - VoIILoO + -L3 3 + AT,

 where L is the Lipschitz constant of u.

 Proof. We may assume that IIu - VIILo(0,T) = sup(u - v). The other case can be
 treated similarly.

 We have u(t, x) - v(t, y) - 4E - At < supx,y{uo(x) - vo(y) - 4EI}. If we
 take x = y, we have

 |U-VIIL-O(o,T) < AT + sup{uo(x) -vo(Y) x -y14 }

 (12) <AT+I|uo-voHILo+SUP{ lxYll- I - 1

 and since the function

 S4
 h(s) = Ls--

 attains its maximum at the point then s = (Le)3. Substituting this value in (12) the
 proof is concluded. [

 Proof of the uniqueness. If we take two viscosity solutions for problem (4), by
 using Lemma 2.5,

 |- VIILOG(O,T) ?< UO - VOH|LO + -L3E3 + AT

 taking 63 = 1u - VIIL'o(O,T), where 8 = L-3, we obtain

 IU- VflLOG(O,T) ? IUO - VO||LO + 31U- V|ILOG(O,T) + AT

 and thus

 |U - V|ILOG(O,T) < 41Iuo - VOIILO + 4AT.
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 162 LUIS ALVAREZ AND JULIO ESCLARIN

 Let t1 be defined by the relation 4Mt1 = 2 where M is the constant given by
 2'1

 Lemma 2.4 for a fixed 6. Then, taking A= MIIu - V1Lo(O,T) we obtain

 1
 - Iu-V||L-(O,ti) < 41luo -VohL?- 2

 =E flU - VlLoo(O,t1) < 81luo- VOflLo-.

 Now let us take an interval (t1, 2t1). Applying the same argument we obtain

 flU - VIIL??(t1,t2) < 81|Ul - |l| LL(O,t1) < 8 8|luo - Vo||L,

 where u1, v1 are the values taken in tl.
 Next we obtain

 |u -V11L-(O,T) <8 ||uo- -Vo|L,

 where n is such that

 n Lt > T,

 and therefore we have

 IIU-V11L-(O,T) < CT||UO -VO L??

 If both solutions have the same initial datum uo, they coincide. This concludes the
 uniqueness statement of the theorem.

 For the proof of the existence of solutions, we shall use the following approach.

 Let us consider a family of periodic functions u' E C0?(R1N) such that
 N

 u uo uniformly in RN as E 0.

 jjVUEj L- ? VU0 jL-; 1IU L- < ||UO||L?-
 Let us introduce g, - g + E; a' - =Eij + ca', where

 (i) ao - aij uniformly on compact subsets of Rn \ {0};

 (ii) Supi,j,, SupRn\{o} a1 < oC (uniform boundedness!);
 (iii) Z c4i(p))(,j > 0 Vp E R \ {o}, ( E RN;
 (iv) caj4 has compact support on RN \ {o}.

 We need the following lemma.

 LEMMA 2.6. Let A = (a,3), U = (ui) be symmetric matrices with A > 0; then

 Sa2ju3 < C(Sai3S EUkiUkj)-
 i,j i,j k

 Proof. As

 5 a7juij = tr AU and Ea23 Eukiukj trAU2,
 i,j 7,j k

 to prove the lemma, one chooses B so that it diagonalizes U (and not A); i.e.,

 tBB = Id U = tBDB.
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 Then, writing (cij) = BAtB and D = diag{iA, ... ., A,}, one computes

 trAU12 I tr(AtBDB) 2 I tr(BAtB)D12

 ( ciiAi) < 3 cii cii4A? (by the Schwarz inequality)

 tr BAtB . tr BAtBD2 tr A trAU2.

 Then the lemma is proved by taking C = (tr A) 2 .
 LEMMA 2.7 (gradient estimate). Let u be a smooth solution of

 (13) ~ 9UN (13) t- -g (a * VG) ,: aij -(Vu)uij- f (u) = O irn ] O, +oo [x R
 i,j

 where aij are smooth on RN and w E L??(]O, +oo[xRN). Then

 (14) 1Vu(t, .)|ILO(RN) < e V1 0 |OLOO(RN),

 where C depends on sup I, sup f'(s), and sup1Pj<R D2g(p) 1, with R = LOO(RN)
 x VG ||L1(RN)

 Proof. To prove the inequality we use the classical Bernstein method [14]. To this
 end, we differentiate (13) with respect to Xk, and we find

 auk = ak (9 (* VG)) S aij (Vu) uij
 ataVi,

 + g(w * VG) [( axj ) UlkUij + aij (V)ijk + f'(U)Uk.

 Hence, we obtain by multiplying by 2uk

 2u aU k 2(k (9(w * VG))) 5 aij (VU)UijUk at

 + 2g(w VG) ( >X ) UlkUij + : aij (VU)Uijk Uk + 2f'(u)u 2

 since

 ij (u 2) = ai(2Ukj Uk) = 2UijkUk + 2UikUjk,

 5 Uik'Uk = a jVU1 2 - 2 ik3jk,
 k k

 2EUklUl = Eak (Ua)2 = ak IVU12.
 I I

 Summing over k, we get

 a IVU1 = 2 5 ak (2g(w * VG)) 5 aij (Vu)uijuk
 k i,j

 + g(w * VG) E a a j ak V2| + g(w * VG) 5 a-(Vu)ai1 Va
 aXk ii3

 - 4g(w * VG) 55 a j(VU)UikUjk + 2f'(U) 1VU 2
 k i,j
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 164 LUIS ALVAREZ AND JULIO ESCLARIN

 If we introduce

 ?(v) = g(w * VG) E aij(Vu)&ijv + g(w * VG) S S &akUijV
 i,i k i,S&O

 we can write

 a i e)V,12 = 2 ag(w* G) E aij(VU)UijUk

 - 4g(w * VG) 55 aij(Vu)UikUjk + 2f'(u) IVu12
 k i,j

 as

 1 * alkGl < c,

 (15) Xk ( * VG) < C(g(w * VG))2, (g(x))2 E Wl.(IRN),

 __g 1
 uk < C|Vu||g(x)I2,

 where C depends only on sup lwl and g; then we have

 a-e) |V1|U2 < -4g(w * VG) 55 aij(Vu)UikUjk
 k i,j

 + 2C (g(w * VG)) 5 E aij(Vu)uijuk + 2f'(u) Vul2.
 k i,j

 Taking into account (15) and Lemma 2.6 we obtain

 ( ,- -e) |vu2 ?ll -4g (w * V G)55Eai j( VUt)ti k u Jk

 ? 20,(g(w * VG)) 2 (5,aii (Vu)ukiuki) uk ? 2f'(u)lVu2l

 < -4g( * VG) 55 aj (<Vu)u4kuG k ? g(j * VG) 55k aj (VU)uikuk
 k i,j k i,j

 + C21Vu12 + 2f'(u)1VU12.

 This last inequality is due to 2ab < a2 + b2.

 Due to Ek Ejj aj (Vu)UikUjk > 0, and taking into account that f'(u) is bounded,
 we have

 (16) - IVU12 < CIV12.

 Substituting v for IVu12 in (16) we can write

 (t-t )v < Cv.
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 IMAGE QUANTIZATION AND PDE 165

 By putting v e-ctv, we obtain ( a - ?)i < 0, and recalling that ? is an elliptic
 operator, by applying the maximum principle, we deduce (14). 0

 LEMMA 2.8. Let U? be a smooth solution of

 -g- (U * VG) Ea i(VuE)&jjuE + f(ud) = O. at i  i,j

 Then for all 6 > 0 there exists UE E W2,,(RN) such that for 0 < s < t < T we have

 (1) SUPXERN I U (8, X) - U6 (X) I < CT6,
 (2) SUPXERN ID uE (X) I <
 (3) ||uE(t,.) - UE(.)fLo < (M + ')(t - s) + CT8,
 (4) uE (t, x) is equicontinuous with respect to x and t,

 where CT is a constant which does not depend on 8.

 Proof. To prove (1) and (2), we use the mollifier, proposed to us by Paiva [17], to
 define u" = J6uE(s, .), where J6 is

 (J6uE) (x) N J ( Px( ) U)E (S, y)dy,

 where p is a C? function which verifies the following properties:

 p(x) >O if lxl < l

 p(x) = 0 if lxl > 1,

 p(x)dx = 1.

 We easily obtain

 D2UE(X) =+ DP( X-Y )Du?(t y)dy

 and thus a constant CT > sup IDueI fjxj<1 IDp(x)l exists such that

 SUPX IN D2 U? (X) I < CT

 Besides, we can write

 |u ( E )-l(X) I < EN p(l YI)IESY s

 and since in Lemma 2.7

 iuE (s, y) - u (s, x)|I < CT Ix - YI

 we obtain

 Id (s, x) - uE(x) I < CT8.

 To prove that ue (t, x) is equicontinuous it is enough to prove

 Iu (t, y) - u (t, x)| < CT X - Y1,
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 166 LUIS ALVAREZ AND JULIO ESCLARIN

 The first inequality has already been proved, and only the second inequality
 remains to be proved, for which we do

 v(x, t) = (t, x) - u (x).

 Since the derivative in t is vt = ut we can write

 Vt - g,(U * VG) Z aij (Vue)aijv f (u6) + g (u *VG) Z aij (VUe)&ij U
 i,j i,j

 CT. ?> vt-g?(ue* VG) X,ajj(Vu6)&jjv ?M? 8 5=M
 i,j

 If we now denote

 l (V) = g, (d * VG) Z aij (VuE)&ijv
 i,j

 and make the substitution

 i31(x,t) = v(x,t) - MT(t - s)

 then i4 - (i3) < 0, and, since il is an elliptic operator, applying the maximum
 principle we obtain that SUPRNX(st) i3(x,t) is attained at t = s -=? v(x,t) <
 MT(t - S) + supX V(X, S) < MT(t - S) + CT8.

 We write

 i2 (x, t) --v(x, t) - MT(t - s).

 We have that b2 - j1(i52) < 0, and for the same reason we obtain that -v(x, t) <
 MT(t - S) + supX V(X, S) < MT(t - S) + CT8.

 In fact, it has been seen that Iv(x, t)I < MT(t - s) + CT6. Then we have that

 ` ?( X) U`(t, X) < IU`(t, X) - U`(x)I + IU ( X) -u`(x)

 ? a(t, X) EU(X) I ?ue(s ) - UlL ? (M + ) (t - s) + CT? + CT.

 Substituting 6 -t - s 2 we have

 |u(s, x) - u(t, x)| < M(t - s) + 2CTft - s|2

 and we deduce easily that ue (t, x) is equicontinuous. [
 Proof of existence of solutions. Using the general theory of quasilinear uniformly

 parabolic equations [5], [11], [14], one checks easily that there exists a function ue
 which is smooth on [0, +oo[xIRN and a solution of

 at-g 9E(U * VG) Z ai (Vued)&ij u + f (u) = 0 in ]0, +oo[xRN at i
 i,j

 Taking into account the consistency and stability properties of viscosity solutions,
 it is enough to prove that U? (or a subsequence of U?) converges uniformly in [0, T] x IRN
 to a function u E C([O, T] x R N) n L??(0, T; Wl??((R N)) for all T < oo.

 Since the functions uE are equicontinuous, by using the Ascoli-Arzola theorem,
 we conclude the proof.
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 IMAGE QUANTIZATION AND PDE 167

 3. Numerical analysis.

 3.1. Optimal quantizer. In order to compute our model the first problem to

 solve is the choice of the quantizer Qs. Usually, the Lloyd functional (1) has been

 used to choose such a quantizer. However, in applications to image processing it is

 desirable that the quantizer levels are not too close each other. To avoid this, we add

 two terms in the Lloyd functional, so we work with the functional (2)

 E(Qs) = E ( (s - uk)2dH(s) + tk+ + CQ ? Uk

 where L and C are positive constants. We notice that when L and C tend to infinity,

 the minimum of the above functional tends to the uniformly distributed quantizer; i.e.,

 the distance between the quantizer levels is constant. Moreover, using functional (2)

 we remove some nonuniqueness problems that can appear when the Lloyd functional

 is used. Indeed, in the case of the histogram of the image being 0 in a region, then

 the Lloyd functional can have several global minima. But in the case of the functional

 (2) this nonuniqueness problem is removed because it tends to distribute uniformly

 the quantizer levels.

 The first way we tried to compute a global minimum of functional (2) was the
 descent gradient procedure. We have seen that this procedure does not work because

 it depends strongly on the initial condition that we choose. The problem is due to

 the fact that functional (2), as in the case of Lloyd functional, has in general a lot of
 local minima that can be far away from the global minimum. To solve this problem

 we use an exhaustive search among all possible choices of quantizer Qs. We will

 assume that the codewords {Uk} are integer numbers in the interval [0, 255], which
 are the usual bounds of the gray level images. To avoid the codewords {Uk} and the

 separators {tk} having the same values, we will also assume that the separators {tk}

 are float numbers in the set {-0.5, 0.5,1.5, 2.5, ... , 255.5}. In general, the exhaustive

 search of the global minimum of functional (2) has a complexity of O(Ks+l), where
 K represents the dimension of the search space (in our case 257) and S represents the
 number of quantizer levels. However, using dynamic programming techniques we can

 lower the complexity of the search to (9(K2S).
 The dynamic programming techniques have already been used to compute the

 global minimum of the Lloyd functional (see, for instance, [6] or more recently [21],
 where the authors show that in some cases the complexity of the search can be reduced

 to O(KS)). We can apply dynamic programming techniques in the case of the energy
 functional being separable in the following sense: if Qs is a global minimum of the

 energy functional in [ti,ts+i] with t1 < Ul < t2 < U2 < * < Us < ts+i, then the
 quantizer Qs-i defined by t2 < U2 < ...< us < ts+l is a global minimum of the
 energy in the interval [t2, tS+l]. Of course, the functional (2) satisfies this property. So
 we compute the global minimum of the functional (2) in two steps. In the first step we
 compute the energy and the associated codeword Ut,t' for each interval [t, t'] included
 in [-0.5, 255.5]. We notice that the associated codeword Ut,t' can be computed using
 the derivative of the functional (2) with respect to Uk and we obtain

 4./ / t+
 ~1sh(s)ds ?4 02
 f h(s)ds + C

 In the second step, we compute the global minimum Qs of the functional (2)

 recursively by computing Q2, Qt3, ... , taking into account that Qk= {0, UOt'
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 168 LUIS ALVAREZ AND JULIO ESCLARIN

 where Q[t represents the global minimum of the functional (2) in the interval [t', 255.5]
 using k quantization levels.

 Of course, in practice, the integrals have to be replaced by additions. Moreover,
 we can lower the number of operations to compute the energy, taking into account
 that

 (S - ut,t,)2h(s)ds j s2h(s)ds - utt j 2sh(s)ds + u 2t,/ h(s)ds.

 So, we can compute very rapidly this energy and the codewords ut,t/ if we have
 computed previously the integrals fg h(s)ds, fg sh(s)ds, and fg s2h(s)ds for any t'
 -0.5, 0.5, 1.5, ... , 255.5.

 Once the optimal quantizer Qs is computed, we can address the problem of solving
 the PDE (3) which generates our quantization model. The asymptotic state of the
 solution of the differential equation represents a smooth quantization of the original
 image using the optimal quantizer Qs.

 As we have explained in the introduction, we associate with each quantizer Qs

 a function f(.) satisfying for any k, f(tk) = f(Uk) = 0, af (tk) > 0, and {f (Uk) < O.
 We fix the values t1 =-0.5 and ts+1 = 255.5. The values of the function f(.) outside
 the interval [-0.5, 255.5] are not really important because the image distribution will
 be in general in the interval [0, 255]. In the interval [-0.5,255.5] we define f(.) in the
 following way:

 f(s) U - (S-tk)(S-Uk) if s E [tk,Uk),
 Uk-tk

 1
 f(s) I (s - tk+1)(s -Uk) if s E [Uk, tk+1).

 tk+l - Uk

 This choice of function f(.) fits the value of the derivative of f in the level quan-
 tizers to -1 in the case of uk and to 1 in tk. Outside the interval [-0.5, 255.5] we
 define the function f following some stability criteria for equation (3) developed in
 the next sections.

 3.2. Differential operator discretization in R2 . Denoting by ( the direction
 orthogonal to Vu, we have

 u = llVull div ( 'VU

 Let 0 be such that (-sin , cos 0). We can write

 (17) u = (u) = sin2 OUXX -2 sin 0 cos OUXY + cos2 HUyy

 We are going to write u~ as a linear combination of values of u on a 3 x 3 fixed
 matrix.

 Ui-l,j+l ui,j+l Ui+l,j+l

 Ui _ , jH U+l,j

 7bi-i,j- 'U, t?+l,j-1
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 IMAGE QUANTIZATION AND PDE 169

 (18) ?(u) =-h2(Uij) + Al (ui+,,j + ui-j,j) + A2(Ui,j+l + Ui, --I)
 + A3(U+I,j+l+ ui- ,j-1) + A4(Ui+l, --I + Ui-1,j+),

 where h is the increment value which we consider constant and equal to both variables.
 The discretization by this method depends on a free parameter A0 which we shall

 choose by a geometrical criterion.

 By applying Taylor's formula and equating (17) with (18) we obtain the following

 values for Ai:

 1 2Ao -sin2 0

 2 2AO - cos2 0
 h2=

 -Ao + '(1 +sin 0 cos 0)
 3 ~~~h2

 -A0 + '(1 - sin H cos H)
 4 ~~~h2

 Now, we search for a trigonometrical polynomial on 0 for the value of Ao(0) in
 such a way that when there is diffusion in some principal directions, in the other
 directions the diffusion is zero.

 If we put A0(H) = a + bcosH + csinH + dcos2H+esinH+f sin0cosH+gsin2 COS2 0,
 then, taking into account the values of Ai already calculated and recalling that (17)
 is an approximation of (18),

 -4A0 = -2 + 4 sin2 0 COS2 0,

 A1 = cos2 0(sin2 0 - COS2 0),

 A2 -sin2 0(sin2 0 - COS2 0),

 A3 = sin2 0 cos2 0 + - sin 0 cos 0,
 2

 A4 = sin2 0 cos2 0-2 sin 0 cos 0
 2

 are the final values obtained.

 3.3. Algorithm and stability. The algorithm is divided into the following
 steps:

 (1) Computation ut, and uy:

 uz(i = 4 Ui+l,j- Ui_l1J + 2((Ui+l,j+l- Ui_lIJ_1) + (Ui+l,j-l- Ui-1,3+1)))

 u t(i) =4 Ui,j+1 - uirj + 2((Ui+1,3+1- Ui_l,'_1) + (ui+l,j-1 -ui-l,j+l)))

 (2) Computation cos 0 and sin 0:

 cos O = , sino H U=
 /U + 2x2 + y
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 170 LUIS ALVAREZ AND JULIO ESCLARIN

 (3) Computation of the function g. First, we compute the convolution of the image
 with a Gaussian kernel with a given standard deviation a, and then we compute the
 norm of the gradient using the algorithm presented in step 1. We use a threshold
 parameter to determine when the diffusion is lowered.

 (4) Iterative scheme:

 un+1 r~1 A t . -jU. in U' nj) + f(Un )

 To simplify the stability analysis of the algorithm, taking into account that equa-

 tion (4) satisfies invariance by translations, we have taken the function f (x) centered
 with respect to the origin.

 The numerical scheme stability is established in the following theorem.
 THEOREM 3.1. Let

 anj 4lf = - 4g(0nj)CdAo A t) + g(u0j)Cd A t E Ak,j un+k,j+l + At tNs(u ji
 k,1

 where f (x) satisfies

 If (U) ? < Cr if u E [-a a],

 f(u) = k(-a-u) if u < -a,

 f(u) = k(a -u) if u >a.

 I. --a *xa
 -M \/ . M

 f (x)

 If 065Cd - 2k < 0 is verified then we have that VM > a, :i > 0 in such a way
 that when 0 < A t < 6

 if Vi,j I < M- = un+II < M.

 Proof. We recall that 0 < g(s) < 1. Let us divide the problem into three cases.

 Case 1. a0 e [-M, -a]. We have Unj+I = U7j (I - 4g (uj)CdAo A t - k A t) +
 Cdg(U~I;) A t Ek,j Ak,j Un+k j+- A t ka.

 If we impose that (1 - 4g(ainj)CdAo A t - k A t) > 0, we obtain

 (i) un+1 < Cdg(ua,) tZk,I Ak,jI M < M Cdg(u) AtZ tjk,l | Ak,j| < 1-
 (ii) unj+ > (1-4Cdg(u07j)Ao A t - k A t)(-M) + Cdg(uanj) A tEkl IAk,jV(-M)

 - A t ka

 (1 -4g(a0nj)CdAo A t-k A t)(-M) + Cdg(u zj) At ZEk,1 k,j(-M)
 -A t kM

 ? (1-4g(anj) CdAo A t-2k A t + Cdg(uanj) A t Ek I Ak,j I) (-M) > -M
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 IMAGE QUANTIZATION AND PDE 171

 whenever

 (19) | (1- ((4Ao At t- AtE IAkj I)9(Uj)9(Un j)Cd+2k) At) <1

 and we obtain a condition on A t: ((4A0 A t-At Zk, jAk,j )g(i4)Cd + 2k) A t < 2
 must be verified.

 By elementary calculations, one easily obtains

 -0.65< 4 At -tAtE Ak,j ? 0
 k,1

 and therefore in order to verify (19), it is sufficient to take A t <2

 Case 2. E [-a, a]. We have K +'I < (1- 4g (z)CdAo A t)a + CdYGLtQ
 At Zk,lI Ak,j I M + A t Cr. Let us suppose that this expression is < M. In that case,
 we obtain (1 - 4g ( )CdAo A t)a + A t Cr < M(1 - Cdg(Ot) A t Zk,I |Ak,_ |) and
 dividing everything by (1 - Cdg(Un) A tZkl I Ak,j ) we have

 (1 - 4g(Unj )CdAo A t)a + A t Cr (20) (1-CdgQi <CJAtZ/ )k) KM.

 When A t - 0, the left-hand side of (20) therefore has a as limit, a being less
 than M; therefore, if At is small enough for (20) to be true, and so, z7 t1 K M.

 Case 3. c E [a, M]. It is proved in the same way as in Case 1. [

 4. Experimental results. The numerical experiences have been computed in

 two steps. In the first one we compute the optimal quantizer Qs with respect to the
 energy (2). In this step we have to choose three parameters:

 (1) the number of levels S to determine the quantizer Qs,
 (2) the constant L in the energy functional (2),
 (3) the constant C in the energy functional (2).

 In the second step we solve numerically the differential equation (3). In this step we
 must choose five parameters:

 (1) The standard deviation a of the Gaussian function G, to compute G, * a.
 (2) The threshold parameter Tg to determine the shape of the function g(.). It

 means that the diffusion is lowered for IVG, * au > Tg.
 (3) To balance the influence of the diffusion and reaction terms, we use a constant

 Cf. So we use Cf f(u) as reaction term, where f is defined above.
 (4) The discretization step At.
 (5) The number of iterations.
 The first experience that we present in Figure 1 shows the difference between

 the Lloyd functional (1) and the functional (2) proposed in this paper. We take a
 synthetic picture which represents a square in a dark background (Figure la). The
 normalized histogram of the picture, h(s), contains only three nonzero values, which
 are h(3) = 0.497864, h(6) = 0.480103, and h(140) = 0.022034. If we compute the
 optimal quantizer Q2 using the Lloyd functional with 2 codewords, we obtain that

 ti = -0.5, Ul = 3, t2 = 3.5, U2 = 12, and t3 = 255.5. So the gray level 3 remains
 unchanged and the gray levels 6 and 141 go to the same level 12. Therefore, as we can
 see in Figure lb, the square is lost. However, if we compute the optimal quantizer Q2
 associated to the functional (2) with L = 20, and C = 0.0025, we obtain t1 --0.5,
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 172 LUIS ALVAREZ AND JULIO ESCLARIN

 FIG. 1. Figures follow from left to right: (a) original image, (b) 2-level quantization using Lloyd
 energy, (c) 2-level quantization using energy (2).

 u1 = 5, t2 = 41.5, U2 = 141, and t3 = 255.5. So the background is normalized to the
 gray-level value 5 and the square remains in the picture as we can see in Figure lc.

 In the second experience we present a medical image provided by the service

 of vascular interventional radiology of the hospital Nuestra Sefiora del Pino de Las
 Palmas de Gran Canaria (Figure 2). In the top, from left to right, we present (a) the

 (a) (b) (c) (d)

 (e) (f (g) (h)

 FIG. 2. Figures follow from left to right and from top to bottom: (a) original image, (b) 3-level
 quantization using uniform distributed quantizer, (c) 3-level quantization using energy (2), (d) 3-
 level quantization using equation (3), (e) histogram of the original image, (f) location of uniform
 distributed quantizer, (g) location of the optimal quantizer using the energy (2), (h) = (g).
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 X~~~~~~~~~~~~1 ' .

 (a) (b)

 (c) (d)

 (c) (F) (g) ~~~~~~~~~~~~(h)

 FIG. 3. Figures follow from left to right and from top to bottom: (a) original image, (b) original
 image with noise, (c) 8-level quantization of the noised image using equation (3) with 20 iterations,
 (d) result after 200 iterations, (e) histogram of the original image, (f) location of optimal quantizer,
 (g) histogram of image (c), (h) histogram of picture (d).

 original image; (b) a 3-gray level quantized image using a uniform distribution of
 codewords and separators (without PDE); (c) a 3-gray level quantized image using
 as quantizer Q3 a global minimum of the functional (2) with L = 1 and C = 0.0025
 (without PDE); (d) a 3-gray level quantized image using the above quantizer Q

 and the PDE (3) with At = 0.2, Cfc = 4.0, a, = 2, Tg = 25, and 100 iterations.
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 174 LUIS ALVAREZ AND JULIO ESCLARIN

 At the bottom of the picture from left to right we present (e) the histogram of the
 original picture, (f) the quantizer levels which correspond to a uniform distribution,
 and (g) the quantizer levels which correspond to minimize the functional (2). (h) The

 quantizer Q3 obtained above is used to compute the PDE (3), so (g) = (h). In (f),
 the long vertical lines represent the location of the codewords and the short vertical
 lines the location of the separators.

 In the third experiment, we present an application of our model to quantization

 and denoising. In Figure 3a we present the original image. In (b) we have introduced
 a noise in the picture. We take 25% of the picture in a random way and we change its
 value randomly. In (c) we compute the solution of the PDE (3) using as initial datum
 the noised picture with the following parameters. We choose an 8-gray level optimal

 quantizer Q8 with L = 10 and C = 0.0025. We solve numerically the PDE with
 At = 0.1, Cf = 10.0, cx = 3, Tg= 45, and 20 iterations. We present the result after
 200 iterations in (d). In (e) we see a histogram of the original picture. The histogram

 of the noised picture and the location of the codewords and separators associated to

 Q8 are shown in (f). We see the histogram of the noised picture after 20 iterations of
 our algorithm after 200 iterations in (g) and (h).
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